Phase II Environmental Site Assessment

Former Plainwell Paper Mill 200 Allegan Street Plainwell, Michigan

Prepared for: City of Plainwell, Michigan

> October 2006 Project No. G06523

PHASE II ENVIRONMENTAL SITE ASSESSMENT

FORMER PLAINWELL PAPER MILL 200 ALLEGAN STREET PLAINWELL, MICHIGAN

PREPARED FOR: CITY OF PLAINWELL MICHIGAN

OCTOBER 2006 PROJECT NO. G06523

TABLE OF CONTENTS

NTRODUCTION	1
BACKGROUND	
NVESTIGATION METHODS	3
ANALYTICAL RESULTS	
DATA ANALYSIS	
Former Wastewater Lagoon Area	5
Former Coal Storage and Fill Area	6
#6 Fuel-Oil AST Area	
AST/UST Areas	7
CONCLUSIONS	7

LIST OF FIGURES

Figure 1 Site Location Map Figure 2 Site Diagram

LIST OF TABLES

Table 1 Soil Analytical Results, Detected Parameters

Table 2 Groundwater Analytical Results, Detected Parameters

LIST OF APPENDICES

Appendix 1 Borehole Logs

Appendix 2 Analytical Data Report

ficeh

INTRODUCTION

Fishbeck, Thompson, Carr & Huber, Inc. (FTC&H) has performed a Phase II Environmental Site Assessment (ESA) on the former Plainwell Paper Mill Site located at 200 Allegan Street, Plainwell, Michigan (subject property).

The subject property is located on approximately 34 acres containing the former Plainwell Paper Mill, associated wastewater treatment plant, and the vacant Specialty Minerals, Inc. property. The subject property is located north of Allegan Street and south of the Kalamazoo River. A Site Location Map is provided as Figure 1. A Site Diagram is provided as Figure 2.

During the course of the Phase I ESA investigation (January 2004), FTC&H encountered evidence of the following recognized environmental conditions (RECs) in connection with the subject property:

- A. The subject property, plus three other paper mills, are included on the National Priorities List as part of the Superfund site known as Allied Paper, Inc./Portage Creek/Kalamazoo River and could potentially be included in the Record of Decision. The potential exists for polychlorinated biphenyls (PCBs) to be present at the subject property in concentrations exceeding Part 201 Generic Residential Cleanup Criteria (GRCC).
- B. The presence of sludge and fly ash in the former wastewater lagoons containing metals in concentrations exceeding Part 201 GRCC from papermaking operations.
- C. The presence of sediments (gray seam) containing levels of PCBs above Part 201 GRCC in the Kalamazoo River, floodplain, and river bank.
- D. Fill material observed in the river bank and aeration pond banks containing concrete, brick, metal, and other solid waste materials from an unknown source.
- E. Fill material present at the subject property consisting of cinders, ash, and stained soils that have the potential to cause a material release of hazardous substances to underlying soils and groundwater.
- F. The potential for a material release of hazardous substances to soils from waste coal on the ground surface and in storage piles in the former coal storage area located west of the mill buildings.

ficeh

G. Near surface soils between the coal storage area and the Kalamazoo River containing arsenic, mercury, lead, benzo(a)pyrene, phenanthrene, and dibenzo(a,h)anthracene in concentrations exceeding Part 201 GRCC.

H. The potential for a material release of hazardous substances from solid waste piles located between the former coal storage area and the Kalamazoo River.

 The #6 fuel-oil spill remediation area due to a confirmed release of petroleum products, the documented presence of contaminants above Part 201 GRCC in soils collected from the excavation

base, and the potential for residual contamination in the excavation sidewalls.

J. A release of tetrachloroethene to soils south of the fuel-oil pump house in concentrations exceeding

Part 201 GRCC.

K. A release of #6 fuel oil within the pump house and the potential for a materials release to

underlying soils.

L. The potential for a material release from the former 10,000-gallon kerosene underground storage

tank (UST) used in the de-inking process.

M. A material release of hazardous substances to soils present within the #6 fuel-oil aboveground

storage tank (AST) containment and soils adjacent to the railroad spur, near the main courtyard.

N. A material release of kerosene in December 1987 to surface soils from an excavated UST.

O. The potential for a material release from the use of a 17,000-gallon brine UST system.

The Phase II ESA was conducted on September 5 and 6, 2006.

BACKGROUND

Located adjacent to the Kalamazoo River floodplain and mill race, the subject property has been used for

papermaking operations since the early 1880s. The paper mill buildings and improvements occupy the

majority of the eastern one-half of the subject property. The wastewater treatment plant and Specialty Minerals, Inc. occupy the center portion of the subject property. The western portion of the subject

property is undeveloped and contains former wastewater lagoons that have been filled with residual

property is discovered and somalis former wastewater laggerie that have been init

waste material and covered.

2

INVESTIGATION METHODS

Nine soil borings (SBs) were installed using a Geoprobe to evaluate the RECs at the subject property. SB-1 through SB-4 were installed in the former wastewater lagoon area. SB-5 was installed in the former coal storage area. SB-6 was installed adjacent to the rail spur in the #6 fuel-oil AST and brine UST area. SB-7 was installed in an area showing evidence of having been filled with waste coal, coal ash, cinders, and other solid waste. SB-8 and SB-9 were installed between the north side of the mill and the Kalamazoo River, downgradient of several former AST/UST areas. The SB locations are shown on the Site Diagram provided as Figure 2.

Geoprobe drilling services were provided by Great Lakes Geotechnical Services, Galesburg, Michigan. The SBs were installed using a Geoprobe equipped with 2-inch-diameter macro-core samplers and single-use acetate liners. A continuous core of soils was collected at each SB location until the total depth of the boring was encountered. The total depth of each boring ranged from 10 to 20 feet below ground surface (bgs). The soil cores were described by a FTC&H geologist and field screened for the presence of total organic vapors (TOVs) using a photoionization detector (PID).

Temporary monitoring wells TW-3 and TW-5 through TW-9 were installed in SB-3 and SB-5 through SB-9, respectively, to collect groundwater samples. The temporary monitoring wells were constructed of one-inch-diameter polyvinyl chloride (PVC) risers equipped with a 5-foot-long PVC screen installed into the upper portion of the uppermost water-bearing unit. The borehole logs are provided as Appendix 1. The wells were sampled using a peristaltic pump equipped with disposable tubing following low-flow methods.

One to two soil samples were collected from waste residuals or impacted soils at each of the soil borings (SB-1 through SB-4) located in the former wastewater lagoons. The soil samples were collected at varying depths, depending on the location of the waste residuals encountered. These soil samples and the groundwater sample collected from TW-3 were analyzed for PCBs and the metals (total analysis): arsenic, cadmium, chromium, copper, lead, mercury, selenium, and zinc.

In the former coal storage area, one soil sample was collected from the unsaturated soils underlying the coal at SB-5, at a depth of 2.5 to 3.5 feet. In the fill area, two soil samples were collected from the unsaturated soils at SB-7, at depths of 0 to 0.5 feet and 7 to 7.5 feet. These soil samples and the groundwater samples collected from TW-5 and TW-7 were analyzed for polynuclear aromatic hydrocarbons (PNAs), phenols (acid fraction), and the metals (total analysis): arsenic, cadmium, chromium, copper, lead, mercury, selenium, and zinc.

ficeh

In the #6 fuel-oil AST area, one soil sample was collected from the unsaturated soils at SB-6, from 0 to 1 foot bgs. A deeper soil sample was not collected, since visible staining was not present, and TOVs were not detected in the soils using a PID. Soil and groundwater samples collected from SB/TW-6 were analyzed for the Method 8260 Plus Scan of volatile organic compounds (VOCs), PNAs, PCBs, and the metals (total analysis): arsenic, cadmium, chromium, copper, lead, mercury, selenium, and zinc. The groundwater sample was also analyzed for chloride.

No soil samples were intended to be collected from borings SB-8 and SB-9, located downgradient of the former AST/UST Areas. The groundwater samples collected from TW-8 and TW-9 were analyzed for VOCs, PNAs, and the metals (total analysis): arsenic, cadmium, chromium, copper, lead, mercury, selenium, and zinc.

One trip blank was submitted for analysis of VOCs to verify that cross contamination between the samples did not occur while stored in the cooler during transportation to the laboratory. A field blank of the methanol used to preserve the VOC soil samples was also submitted for analysis of VOCs. Duplicate and matrix spike/matrix spike duplicate samples from each matrix (soil and groundwater) were collected for analysis. These additional samples are required by Michigan Department of Environmental Quality (MDEQ) Operational Memorandum No. 2 to ensure that representative data are used to evaluate precision and accuracy of the analytical data.

The samples were collected directly into laboratory-prepared bottles, stored on ice in an insulated cooler, sealed, and transported under chain-of-custody documentation to TriMatrix Laboratories, Inc., (TriMatrix), Grand Rapids, Michigan, for analysis.

ANALYTICAL RESULTS

The Analytical Report provided by TriMatrix is included in Appendix 2. Soil and groundwater analytical results for the detected parameters are summarized on Tables 1 and 2, respectively, and compared to applicable MDEQ Part 201 Generic Residential and Commercial I Cleanup Criteria (GRCCC).

DATA ANALYSIS

FORMER WASTEWATER LAGOON AREA

SB-1 was installed in the former wastewater lagoon area, between the two clarifiers. One soil sample was collected from a depth of 12.5 to 13 feet bgs. No TOVs were detected during field screening of the recovered soils in SB-1. Arsenic and chromium were detected in concentrations exceeding Part 201 GRCCC. Cadmium, copper, lead, mercury, selenium, and zinc were detected in concentrations below Part 201 GRCCC. PCBs were not detected above laboratory reporting limits in the sample collected at SB-1.

SB-2 was installed in the western portion of the former wastewater lagoon area. Two soil samples were collected at SB-2, one from the paper waste (at 9 to 10 feet bgs) and one from ash and cinders (at 12 to 13 feet bgs). TOVs were detected during field screening of the recovered soils at 9 feet bgs (1.0 parts per million [ppm]). Selenium was detected in the soil sample collected at 9 to 10 feet bgs in concentrations exceeding Part 201 GRCCC. Arsenic, chromium, and mercury were also detected in the soil sample collected at 9 to 10 feet bgs, exceeding one of the Part 201 GRCCC, but are at or below Statewide Default Background Levels for each of the metals. Cadmium, copper, lead, and zinc were detected in concentrations below Part 201 GRCCC, while PCBs were not detected above laboratory reporting limits in the sample collected from 9 to 10 feet bgs. Chromium was detected in the soil sample collected from SB-2 (12 to 13 feet bgs) exceeding one of the Part 201 GRCCC, but is below Statewide Default Background Levels for chromium. Arsenic, cadmium, copper, lead, selenium, and zinc were detected in concentrations below Part 201 GRCCC. The remaining tested parameters were not detected above laboratory reporting limits in the sample collected from 12 to 13 feet bgs.

SB-3 was installed in the western portion of the former wastewater lagoon area. Two soil samples were collected from the paper waste encountered at SB-3, from 2 to 2.5 feet bgs and from 4 to 5 feet bgs. No TOVs were detected during field screening of the recovered soils in SB-3. Arsenic, chromium, and mercury were detected in the soil sample collected from 2 to 2.5 feet bgs in concentrations exceeding Part 201 GRCCC. The remaining tested parameters were detected in concentrations below Part 201 GRCCC. Mercury was detected in the soil sample collected from 4 to 5 feet bgs in concentrations exceeding Part 201 GRCCC. Chromium was detected in the soil sample collected from 4 to 5 feet bgs exceeding one of the Part 201 GRCCC, but below Statewide Default Background Levels for chromium. The remaining tested parameters were detected in concentrations below Part 201 GRCCC. TW-3 was screened between 8 and 13 feet bgs, and a groundwater sample was collected. Arsenic was the only tested parameter detected in concentrations exceeding Part 201 GRCCC.

SB-4 was installed in the western portion of the former wastewater lagoon area. One soil sample was collected from a depth of 9 to 10 feet bgs. No TOVs were detected during field screening of the recovered soils in SB-4. Selenium was detected in concentrations exceeding Part 201 GRCCC. Chromium was detected in the soil sample exceeding one of the Part 201 GRCCC, but below Statewide Default Background Levels for chromium. Arsenic, cadmium, copper, lead, mercury, and zinc were detected in concentrations below the Part 201 GRCCC. PCBs were not detected above laboratory reporting limits in the sample collected at SB-4.

FORMER COAL STORAGE AND FILL AREA

SB-5 was installed in the former coal storage area. One sample was collected from the soils underlying the coal at a depth of 2.5 to 3.5 feet bgs. No TOVs were detected during field screening of the recovered soils in SB-5. Arsenic, copper, mercury, selenium, and zinc were detected in concentrations exceeding Part 201 GRCCC. Chromium was detected in the soil sample exceeding one of the Part 201 GRCCC, but below the Statewide Default Background Levels for chromium. Cadmium, lead, and several PNAs were detected in concentrations below Part 201 GRCCC. TW-5 was screened between 10 and 15 feet bgs, and a groundwater sample was collected. None of the tested parameters were detected in concentrations exceeding Part 201 GRCCC.

SB-7 was installed in the area where fill material is known to exist. Two soil samples were collected from SB-7, from 0 to 0.5 foot bgs and from 7 to 7.5 feet bgs. TOVs were detected during field screening of the recovered soils in SB-7 at 6 feet bgs (4 ppm). Mercury and selenium were detected in the soil sample collected from 0 to 0.5 foot bgs in concentrations exceeding Part 201 GRCCC. Arsenic and chromium were detected in the soil sample collected from 0 to 0.5 foot bgs in concentrations exceeding one of the Part 201 GRCCC, but are at or below Statewide Default Background Levels for arsenic and chromium. Cadmium, copper, lead, zinc, and several PNAs were detected in concentrations below Part 201 GRCCC. Arsenic, chromium, copper, mercury, and zinc were detected in the soil sample collected from 7 to 7.5 feet bgs in concentrations exceeding Part 201 GRCCC. Cadmium, lead, selenium, and several PNAs were detected in concentrations below Part 201 GRCCC. TW-7 was screened between 8 and 13 feet bgs, and a groundwater sample was collected. Mercury was the only tested parameter detected in concentrations exceeding Part 201 GRCCC.

#6 FUEL-OIL AST AREA

SB-6 was installed adjacent to a rail spur, near the #6 fuel-oil AST and a brine UST. One sample was collected from a depth of 0 to 1 foot bgs. No TOVs were detected during field screening of the recovered

ficeh

soils in SB-6. Naphthalene, xylenes (total), and arsenic were detected in concentrations exceeding Part 201 GRCCC. Chromium, mercury, and selenium were detected in the soil sample exceeding one of the Part 201 GRCCC, but are below the Statewide Default Background Levels for each of the metals. Cadmium, copper, lead, zinc, and several VOCs and PNAs were detected in concentrations below the Part 201 GRCCC. TW-6 was screened between 10 and 15 feet bgs, and a groundwater sample was collected. None of the tested parameters were detected in concentrations exceeding Part 201 GRCCC.

AST/UST AREAS

SB-8 was installed downgradient of the former AST/UST Areas, between the mill and the Kalamazoo River. No soil samples were collected at SB-8, and no TOVs were detected during field screening of the recovered soils. TW-8 was screened between 6 and 11 feet bgs, and a groundwater sample was collected. Copper, lead, and mercury were detected in concentrations exceeding Part 201 GRCCC.

SB-9 was installed downgradient of the former AST/UST Areas, between the mill and the Kalamazoo River. No soil samples were collected at SB-9. and no TOVs were detected during field screening of the recovered soils. TW-9 was screened between 6 and 11 feet bgs, and a groundwater sample was collected. Copper, lead, mercury, and zinc were detected in concentrations exceeding Part 201 GRCCC.

None of the tested compounds were detected in the trip blank and field blank samples in concentrations exceeding laboratory reporting limits.

CONCLUSIONS

FTC&H has conducted a Phase II ESA for the subject property. The purpose of the Phase II ESA was to further evaluate the RECs identified in the January 2004 FTC&H Phase I ESA. Based on the data collected during this investigation, the site is a *facility*, as defined in Part 201 of P.A. 451, 1994, as amended, due to the presence of naphthalene, xylenes (total), arsenic, chromium, copper, mercury, selenium, and zinc in the soils and arsenic, copper, lead, mercury, and zinc in groundwater in concentrations exceeding their respective Part 201 GRCCC.

FIGURES

N: \06523\RASTER\TOPO.TIF

MICHIGAN

SITE DIAGRAM

engineers scientists architects

constructors

Plainwell Paper Mill Plainwell, Michigan

PROJECT NO. G06523 FIGURE NO.

LEGEND

- SOIL BORING

SOIL BORING/TEST WELL

TABLES

Direct Contact

Direct Contact

Criteria*

Table 1 • Soil Analytical Data, Detected Parameters

Plainwell Paper Phase II ESA

September 2006
Sampling Location:
Sample Depth: Groundwater Protection (12.5-13') (9-10') (12-13') (12-13')(2-2.5')(9-10') (4-5') (2.5-3.5')(0-1') (0-1')(0-0.5')(0-0.5') (7-7.5') Statewide Drinking Water Groundwater Surface Comment: Duplicate Duplicate 09/05/06 Field Blank Duplicate Default Water Interface Protection Collection Date: 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 09/05/06 Background Criteria* Protection Criteria* Laboratory Number 0609110-11 0609110-12 0609110-13 0609110-14 0609110-15 0609110-16 0609110-17 0609110-18 0609110-19 0609110-20 Volatile Organic Compound

Acetone (I) Benzene (I)																		
Benzene (I)									410 J	310 J				1,000 U	NA	15,000	34,000	23,000,000
(Dolizene (I)									56	36 J				50 U	NA	100	4,000 (X)	180.000
n-Butylbenzene]							92	38 J				50 U	NA.	1,600	ID	2,500,000
sec-Butylbenzene									26 J	55 U	[50 U	NA NA	1,600	ID	2,500,000
Chloroform									11 J	55 U				50 U	NA NA	1,600 (W)	3,400 (X)	
Ethylbenzene (I)									190	74				50 U	NA NA	1,500 (۷۷)		1,200,000
Isopropylbenzene									69 J	30 J			1				360	140,000 (C)
4-Isopropyltoluene									57 J	22 J				250 U	NA	91,000	ID	390,000 (C)
2-Butanone (MEK) (I)									300 J**	260 J**				100 U	NA	NA 222 222	NA	NA
2-Methylnaphthalene														150 J	NA	260,000	44,000	27,000,000 (C,DD)
Naphthalene									1,200	1,200				330 U	NA	57,000	ID	8,100,000
n-Propylbenzene (I)									1,000	490	-			330 U	NA	35,000	870	16,000,000
Tetrachloroethene									81 J	31 J				100 U	NA	1,600	NA NA	2,500,000
									20 J	55 U				50 U	NA	100	900 (X)	88,000 (C)
Tetrahydrafuran					-				500 J	250 J				1,000 U	NA NA	1,900	220,000 (X)	2,900,000
Toluene (I)									650	360				100 U	NA	16,000	2,800	250,000 (C)
1,2,4-Trimethylbenzene (I)									540	240				100 U	NA	2,100	570	110,000 (C)
1,3,5-Trimethylbenzene (I)						~-			160	75 J				100 U	NA	1,800	1,100	94,000 (C)
Xylenes, m- & p-									970	440				100 U	NA	NA	NA	NA NA
Xylene, o-									670	300		1		50 U	NA	NA	NA	NA NA
Xylenes, Total (Calculated) (I)									1,640	740				150 U	NA	5,600	700	150,000 (C)
Polynuclear Aromatics (PNAs)												·			*			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Acenaphthene								400 U	12 J		33 J	31 J	80 J		NA.	300,000	4.400	41.000.000
Acenaphthylene								4.9 J	140 J		160 J	170 J	18 J		NA NA	5,900	ID	1,600,000
Anthracene								15 J	94 J		200 J	200 J	250 J	}	NA NA	41.000	ID ID	230,000,000
Benzo(a)anthracene (Q)								37 J	510		560 J	440 J	490 J		NA NA	NLL	NLL	20,000
Benzo(a)pyrene (Q)		-						21 J	300 J		350 J	340 J	240 J	}	NA NA	NLL	NLL	2,000
Benzo(b)fluoranthene (Q)								32 J	630		840	780	360 J		NA NA	NLL	NLL	20,000
Benzo(ghi)perylene								20 J	290 J		230 J	220 J	96 J		NA NA	NLL	NLL	2,500,000
Benzo(k)fluoranthene (Q)								10 J	180 J		230 J	230 J	160 J		NA NA	NLL	NLL	200,000
Chrysene (Q)								31 J	310 J		420 J	460 J	430 J		NA NA	NLL	NLL	2,000,000
Dibenzo(ah)anthracene (Q)								5.7 J	75 J		71 J	76 J	8.6 J		NA NA	NLL	NLL NLL	2,000,000
Fluoranthene								75 J	920		1,400	1,400	1,400	- 1	NA NA	730.000	5,500	
Fluorene								5.4 J	21 J		1,400 43 J	1,400 41 J						46,000,000
Indeno(123cd)pyrene (Q)				_ i				15 J	270 J		160 J		85 J		NA NA	390,000	5,300	27,000,000
2-Methylnaphthalene				1								170 J	94 J		NA NA	NLL	NLL	20,000
2-Methylphenol								110 J	350 J		900	720 J	71 J		NA	57,000	ID	8,100,000
Naphthalene				1				1.3 J	200.1		730 U	740 U	720 U	}	NA NA	NA 25.000	NA NA	NA
Phenanthrene								62 J	200 J		490 J	360 J	57 J		NA NA	35,000	870	16,000,000
Pyrene								98 J	360 J		750	700 J	1,000	}	NA	56,000	5,300	1,600,000
Polychlorinated Biphenyls								64 J	830		1,200	1,500	1,300		NΑ	480,000	ID .	29,000,000
PCB Aroclor 1254 (J)	200 11	500.11	200 11	200 11	- 070 :	100 :												
Metals	380 U	560 U	390 U	380 U	270 J	190 J	620 U		360 U						NA	NLL	NLL	4,000
	0.500	- 5,000	7.40	750														
	8,500	5,800	740	750	6,300	2,600	4,000	12,000	22,000		5,800		28,000		5,800	4,600	70,000 (X)	7,600
Cadmium, Total (B)	73	140	19 J	18 J	140	160	170	420	180		270		1,400		1,200	6,000	3,600 (G,X)	550,000
	20,000	18,000	4,700	3,800	19,000	15,000	12,000	14,000	9,300		7,600		30,000		18,000	30,000	3,300	2,500,000
	13,000	38,000	3,200	2,800	23,000	36,000	32,000	240,000	20,000		22,000		250,000	[32,000	5,800,000	75,000 (G)	20,000,000
	10,000	15,000	2,000	1,900	59,000	15,000	8,700	160,000	54,000		41,000		180,000		21,000	700,000	2,800,000 (G,X)	400,000
Mercury, Total (B)	20 J	75	50 U	50 U	220	160	44 J	270	120		280		6,300	1	130	1,700	50 (M)	160,000
Selenium, Total (B)	150	490	100	100	300	330	1,100	1,400	410		500		380		410	4,000	400	2,600,000
	30,000	140,000	15,000	15,000	84,000	120,000	66,000	210,000	57,000		64,000		620,000	1	47,000	2,400,000	170,000 (G)	170,000,000
Solids, Total (%)	87	59	85	87	89	70	53	83	92	91	90	89	91		NA NA	NA	NA	NA
													~			13/3	1473	137

*Part 201 Residential & Commercial I Generic Cleanup Criteria, RRD Op Memo No. 1; January 23, 2006.

Values in µg/Kg except where noted.

Results in dry weight.

Bolded values exceed one or more of the criterion.

**- The compound was also detected in the associated field blank at an estimated concentration of 150 µg/kg.

"--"=Not analyzed.

Data Qualifiers:

J - Estimated Value. U - Not detected.

- (B) Background [as defined in R 299.5701(b)] may be substituted if higher than calculated criterion.
- (C) Value presented is a screening level based on the chemical-specific generic soil saturation concentration (Csat) since the calculated risk-based criterion is greater than Csat.
- (G) Calculated value using hardness of 150 mg/L, assuming SW not protected for DW use.
- (H) Since, analytical data is for total chromium, they shall be compared to the cleanup criteria for Cr VI.
- (I) Hazardous substance may exhibit the characteristic of ignitability as defined in 40 C.F.R. SS261,21.
- (J) Hazardous substance may be present in several isomer forms. Isomer-specific concentrations shall be aded together for comparison to criteria.
- (Q) Criteria for carcinogenic polycyclic aromatic hydrocarbons were developed using relative potential potencies to benzo(a)pyrene.
- (W) Concentrations of trihalomethanes in soil shall be added together to determine compliance with the drinking water protection criterion of 1,600 µg/kg.
- (X) Value assumes SW not protected for DW use.
- (DD) Hazardous substance causes developmental effects Residential and commercial I direct contact criteria are protective of both prenatal and postnatal exposure.
- ID Insufficient data to develop criterion.
- NA Not available/not applicable.
- NLL Not likely to leach under most soil conditions.

Table 2 • Groundwater Analytical Data, Detected Parameters

Plainwell Paper Phase II ESA

September 2006

Sampling Location:	TW-3	TW-3	TW-5	9-M-	9-M.L	7-WT	7-W-T	TW-8	6-ML	В	Pocidential &	Groundwater	
Sample Depth:	(8-13')	(8-13')	(10-15')	(10-15')	(10-15')	(8-13')	(8-13')	(6-11')	(6-11')		Commercial	Surface Water	Groundwater
Comment:		Duplicate			Duplicate		Duplicate			Trip Blank	Commercial 1	Surface votes	Contact
Collection Date:	90/90/60	90/90/60	90/90/60	90/90/60	90/90/60	90/90/60	90/90/60	90/90/60	90/90/60	90/90/60	Dilliking water	menace Capace	Critria*
Laboratory Number:	0609110-04	0609110-05	0609110-03	0609110-06	0609110-07	0609110-01	0609110-02	0609110-09	0609110-10	0609110-08	Clicia	Cileria	
Volatile Organic Compounds													
Tetrachloroethene	***	1	1	1 U	1 U		;	0.38 J	1 U	1 U	5.0 (A)	45 (X)	12,000
Toluene (I)	ŀ	!	1	- n	J C	ı	ı	0.29 J	1 U	1 U	790 (E)	140	530,000 (S)
Xylenes, m- & p-	ı	1	ł	2 U	2 U	1	!	0.26 J	0.18 J	2 U	NA	NA	NA
Xylene, o-	1	ı	1	- -	1 U	1	ı	ر ا 0	1 C	1 U	ΝΑ	AN	ΑN
Xylenes, Total (Calculated) (I)	-	ı		3 ∪	3 ∪	1	ł	0.26 J	0.18 J	3 ∪	280 (E)	35	190,000 (S)
Polynuclear Aromatics (PNAs)													
Acenaphthene		1	9 N	2 ∪	1	5 U	0.5	2 ∪	f 990'0	1	1,300	19	4,200 (S)
Acenaphthylene	ı	1	0.041 J	2 ∩	1	5 U	2 ∪	5 ∪	5 ∪	;	52	Ω	3,900 (S)
Anthracene	l	1	0.054 J	2 ∪	ļ	2 ∪	2 ∪	5 ∪	2 ∪	1	43 (S)	₽	43 (S)
Fluoranthene	1	!	0.11 J	٦ -	l	1 U	7		0.06 کا	ı	210 (S)	1.6	210 (S)
Fluorene	1	ı	0.034 J	2 ∪	ŀ	5 ∪	9	2 ∪	2 ∪	ı	880	12	2,000 (S)
2-Methylnaphthalene	;	1	0.059 J	2 ∪	1	2 ∪	2 ∪		5 J	l	260	Ω	25,000 (S)
Naphthalene	1	ı	0.076 J	0.034 J	1	0.033 J	0.026 J	0.055 J	0.028 J	ı	520	13	31,000 (S)
Phenanthrene	1	ı	0.31 J	2 U	ļ	2 0	2 U	2 U	0.076 J	1	52	2.4	1,000 (S)
Pyrene	-	1	0.074 J	5 U	-	5 U	5 U	5 U	0.045 J	ı	140 (S)	QI	140 (S)
Inorganics										:			
Chloride (mg/L)			1	28	28	1	}	1	-	-	250 (E)	ΑN	0
Metals													·
Arsenic, Total	25	56	0.47 J	1 U	ŀ	3.7	1	2.2	1.9	1	10 (A)	150 (X)	4,300
Cadmium, Total (B)	0.074 J	0.11 J	0.2 U	0.2 U	1	0.2 U	ı	0.46	0.53	ł	5.0 (A)	3.0 (G,X)	190,000
Copper, Total (B)	0.65 J	0.71 J	0.8 J	0.95 J	1	4.4	1	26	22	ŀ	100 (E)	13 (G)	7,400,000
Lead, Total (B)	0.62 J	0.63 J	0.67 J	0.64 J	ı	3.4	ļ	5.4	21	ı	4.0 (L)	16 (G,X)	<u></u>
Mercury, Total (B)	0.2 U	0.2 U	0.2 U	0.2 U	ı	0.037 J	1	0.21	69.0	1	2.0 (A)	0.0013	56 (S)
Selenium, Total (B)	_ _	J U	- ⊃	0.96 J	1	1 U	ı	1 U		;	50 (A)	5.0	970,000
Zinc, Total	7.6 J	11 ک	13 J	6.5 J	1	11 J	1	90	180	1	2,400	170 (G)	110,000,000

^{*}Part 201 Residential & Commercial I Generic Cleanup Criteria, RRD Op Memo No. 1; January 23, 2006.

Values in µg/L except where noted..

Boided values exceed one or more of the criterion. "-"=Not analyzed.

Footnotes:

- (A) Criterion is the state of Michigan drinking water standard established pursuant to Section 5 of 1976 PA 399, MCL 325.1005.
 (B) Background [as defined in R 299.5701(b)] may be substituted if higher than calculated criterion.
 (E) Criterion is the aesthetic drinking water value.
 (G) Calculated value using hardness of 150 mg/L, assuming SW not protected for DW use.
 (I) Hazardous substance may exhibit the characteristic of ignitability as defined in 40 C.F.R. SS261.21.
 (L) Criteria for lead are derived using a biologically based model, as allowed for under Section 20120a(10) of the NREPA and are not calculated using the algorithms and assumptions specificied in pathway-specific rules.
 (S) Criterion defaults to the hazardous substance-specific water solubility limit.
 (X) Value assumes SW not protected for DW use.
 (D Insufficient data to develop criterion.
 (A) Not available/not applicable.

Data Qualifiers: J - Estimated Value. U - Not detected.

APPENDIX 1

Grand Rapids (616) 575-3824 Lansing (517) 627-1141 Kalamazoo (269) 375-3824 Farmington Hills (248) 324-2090

BORING/WELL ID: SB-1
TOTAL DEPTH (ft.): 20'

BOREHOLE LOG

PROJECT: Plainwell Paper Phase II ESA SITE LOCATION: Plainwell, Michigan

PROJECT NO.: G06523

PROJECT MANAGER: Steve Kimm, CPG

LOGGED BY: Brad Peuler

START DATE: 9-5-06

END DATE: 9-5-06

TOC ELEV.: -

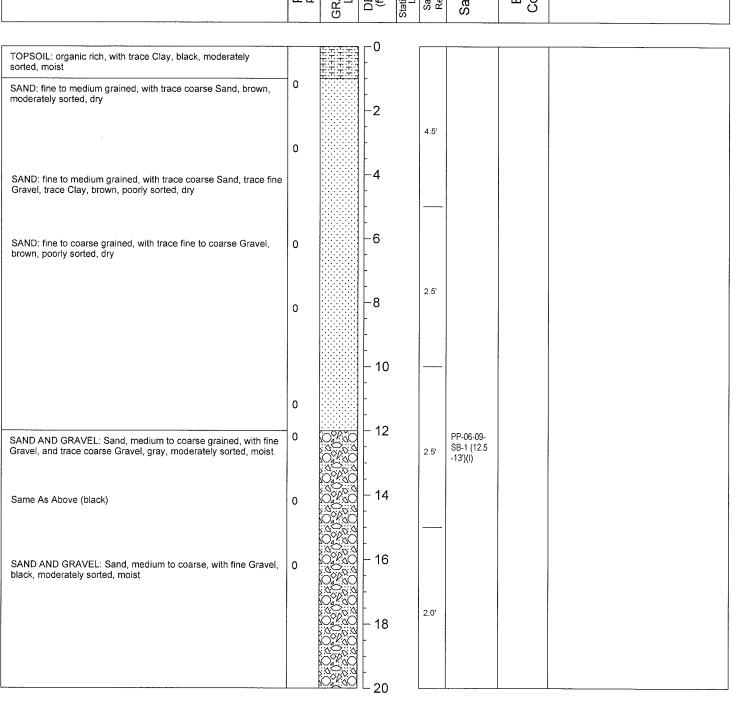
GROUND ELEV.:-

STATIC WATER LVL.: -

DRILLING CO.: Great Lakes Geotechnical Services

DRILLER: Dan & Tom Crandell **RIG TYPE:** 66 DT Geoprobe

METHOD OF DRILLING: Direct Push
SAMPLING METHODS: Macro Cores


NOTES: Located In The Former Wastewater Lagoon Area.

Soil Samples Collected for PCBs, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn.

Static Water Level

Page 1 of 1

DESCRIPTION	PID	GRAPHIC LOG DEPTH (ft. bgl)	Static Water Level Sample/ Revovery	Sample ID	Blow Counts	COMMENTS
-------------	-----	--------------------------------------	--	--------------	----------------	----------

Grand Rapids (616) 575-3824 Lansing (517) 627-1141 Kalamazoo (269) 375-3824 Farmington Hills (248) 324-2090

BORING/WELL ID: SB-2
TOTAL DEPTH (ft.): 20'

BOREHOLE LOG

PROJECT: Plainwell Paper Phase II ESA

SITE LOCATION: Plainwell, Michigan PROJECT NO.: G06523

PROJECT MANAGER: Steve Kimm, CPG

LOGGED BY: Brad Peuler

START DATE: 9-5-06

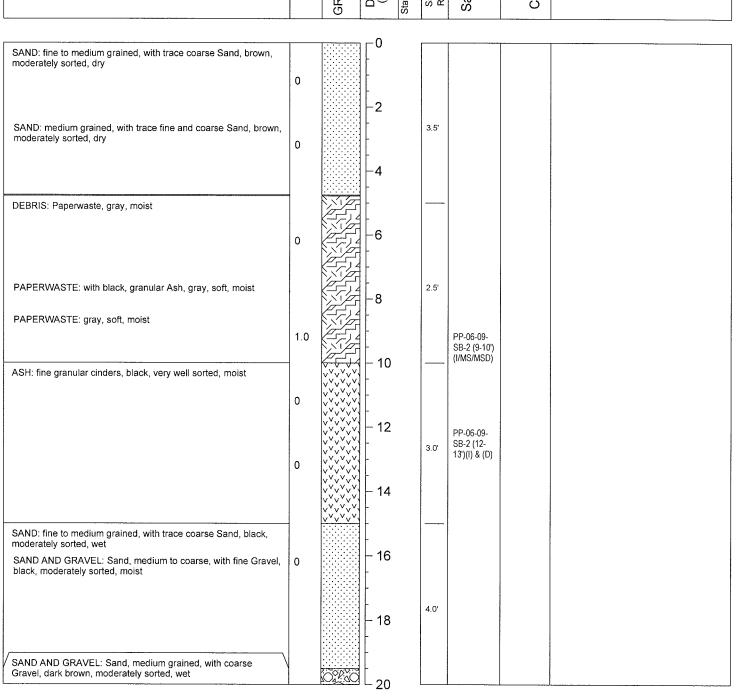
END DATE: 9-5-06
TOC ELEV.: -

GROUND ELEV.:-

STATIC WATER LVL.: -

DRILLING CO.: Great Lakes Geotechnical Services

DRILLER: Dan & Tom Crandell **RIG TYPE:** 66 DT Geoprobe


METHOD OF DRILLING: Direct Push
SAMPLING METHODS: Macro Cores

NOTES: Located In The Former Wastewater Lagoon Area.

Soil Samples Collected for PCBs, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn.

Static Water Level

Page 1 of 1

Grand Rapids (616) 575-3824 Lansing (517) 627-1141 Kalamazoo (269) 375-3824 Farmington Hills (248) 324-2090

BORING/WELL ID: SB/TW-3
TOTAL DEPTH (ft.): 15'

BOREHOLE LOG

PROJECT: Plainwell Paper Phase II ESA
SITE LOCATION: Plainwell, Michigan

PROJECT NO.: G06523

PROJECT MANAGER: Steve Kimm, CPG

LOGGED BY: Brad Peuler

START DATE: 9-5-06

END DATE: 9-5-06

TOC ELEV.: -

GROUND ELEV.:-

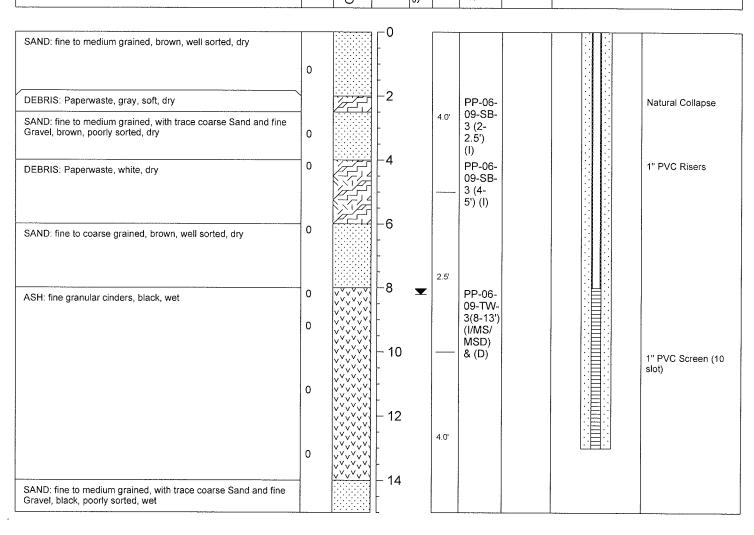
STATIC WATER LVL.: 8.2' BGS

DRILLING CO.: Great Lakes Geotechnical Services

DRILLER: Dan & Tom Crandell
RIG TYPE: 66 DT Geoprobe

METHOD OF DRILLING: Direct Push
SAMPLING METHODS: Macro Cores

Page 1 of 1


NOTES: Located In The Former Wastewater Lagoon Area.

Soil and Groundwater Samples Collected for PCBs, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn.

DESCRIPTION

DESCRIPTION

Static Water | (F. bg) | Counts | Counts

Grand Rapids (616) 575-3824 **BOREHOLE LOG** Lansing (517) 627-1141 BORING/WELL ID: SB-4 Kalamazoo (269) 375-3824 TOTAL DEPTH (ft.): 15' Farmington Hills (248) 324-2090 engineers • scientists • architects • constructors PROJECT: Plainwell Paper Phase II ESA **START DATE: 9-5-06** DRILLING CO.: Great Lakes Geotechnical Services SITE LOCATION: Plainwell, Michigan **END DATE: 9-5-06** DRILLER: Dan & Tom Crandell PROJECT NO.: G06523 TOC ELEV .: -RIG TYPE: 66 DT Geoprobe PROJECT MANAGER: Steve Kimm, CPG **GROUND ELEV.:-**METHOD OF DRILLING: Direct Push LOGGED BY: Brad Peuler STATIC WATER LVL.: -**SAMPLING METHODS: Macro Cores** NOTES: Located In The Former Wastewater Lagoon Area. Static Water Level Page 1 of 1 Soil Samples Collected for PCBs, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn. Static Water Level DEPTH (ft. bgl) Sample ID Sample/ Revovery **DESCRIPTION** COMMENTS 0 SAND: fine to medium grained, brown, well sorted, dry 0 SAND: medium grained, with trace coarse Sand, brown, well sorted, dry 2 0 3.0' 0 SAND: fine to medium grained, with trace fine Gravel, brown, moderately sorted, dry 6 0 0 SAND: medium grained, with trace fine Sand, brown, well sorted, 3.75 dry 8 DEBRIS: Paperwaste, grayish white, fibrous, dry 0 PP-06-09-SB-4 (9-10') (1) 10 0 12 SAND: medium grained, with trace fine and coarse Sand, gray, moderately sorted, wet 2.5' 0

14

SAND AND GRAVEL: Sand, coarse grained, with fine Gravel,

dark gray, well sorted, wet

Grand Rapids (616) 575-3824 Lansing (517) 627-1141 Kalamazoo (269) 375-3824 Farmington Hills (248) 324-2090 BOREHOLE LOG
BORING/WELL ID: SB/TW-5

TOTAL DEPTH (ft.): 15'

PROJECT: Plainwell Paper Phase II ESA SITE LOCATION: Plainwell, Michigan

PROJECT NO.: G06523

PROJECT MANAGER: Steve Kimm, CPG

LOGGED BY: Brad Peuler

START DATE: 9-5-06

END DATE: 9-5-06

TOC ELEV .: -

GROUND ELEV.:-

STATIC WATER LVL.: 9.6' BGS

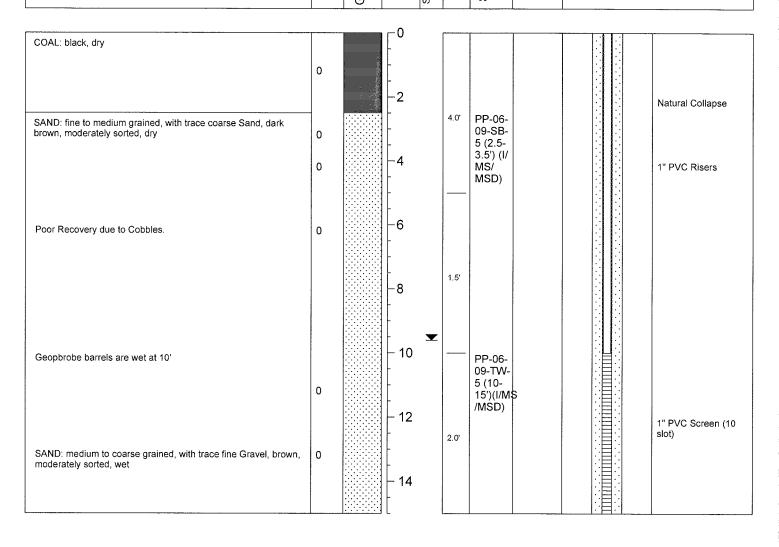
DRILLING CO.: Great Lakes Geotechnical Services

DRILLER: Dan & Tom Crandell
RIG TYPE: 66 DT Geoprobe

METHOD OF DRILLING: Direct Push
SAMPLING METHODS: Macro Cores

NOTES: Located In The Former Coal Storage Area. Soil and Groundwater Samples Collected

for PNAs, Phenols, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn.


▼ S

Static Water Level

Page 1 of 1

DESCRIPTION

Order Sample | Sa

Grand Rapids (616) 575-3824 Lansing (517) 627-1141 Kalamazoo (269) 375-3824 Farmington Hills (248) 324-2090 BOREHOLE LOG

 ${\sf BORING/WELL\ ID:\ SB/TW-6}$

TOTAL DEPTH (ft.): 15'

PROJECT: Plainwell Paper Phase II ESA

SITE LOCATION: Plainwell, Michigan

PROJECT NO.: G06523

PROJECT MANAGER: Steve Kimm, CPG

LOGGED BY: Brad Peuler

START DATE: 9-5-06

END DATE: 9-5-06

TOC ELEV.: -

GROUND ELEV.:-

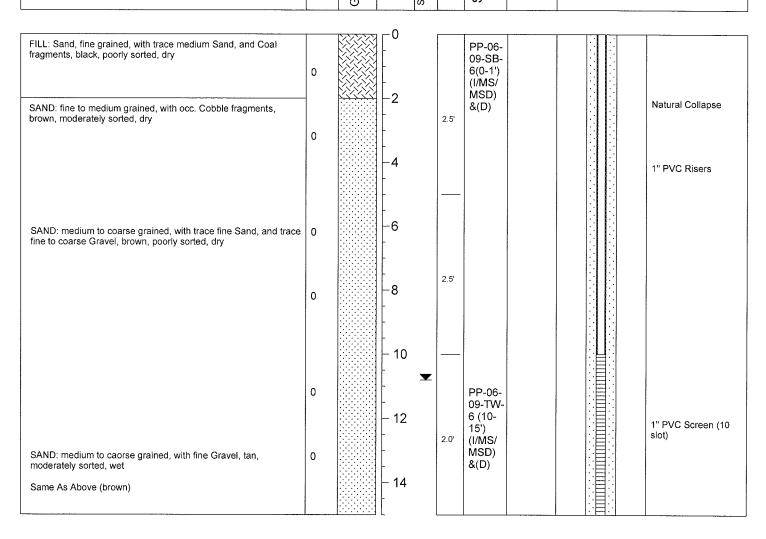
STATIC WATER LVL.: 10.8' BGS

DRILLING CO.: Great Lakes Geotechnical Services

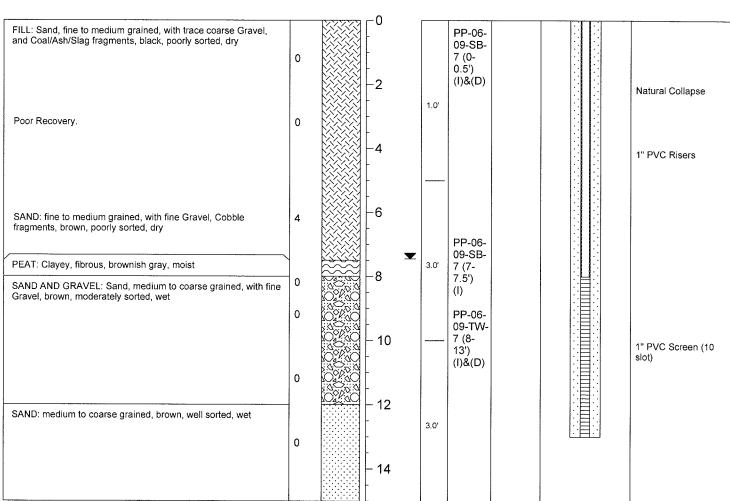
DRILLER: Dan & Tom Crandell **RIG TYPE:** 66 DT Geoprobe

METHOD OF DRILLING: Direct Push
SAMPLING METHODS: Macro Cores

Static Water Level


Page 1 of 1

NOTES: Located In The Former Fuel Oil Area. Soil and Groundwater Samples Collected for Chloride (GW only), 8260 Plus VOCs, PNAs, PCBs, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn.


DESCRIPTION

Order Sample Sample Sample Sample Counts

Order Sample Samp

Grand Rapids (616) 575-3824 **BOREHOLE LOG** Lansing (517) 627-1141 BORING/WELL ID: SB/TW-7 Kalamazoo (269) 375-3824 TOTAL DEPTH (ft.): Farmington Hills (248) 324-2090 engineers • scientists • architects • constructors PROJECT: Plainwell Paper Phase II ESA **START DATE: 9-5-06** DRILLING CO.: Great Lakes Geotechnical Services SITE LOCATION: Plainwell, Michigan **END DATE: 9-5-06** DRILLER: Dan & Tom Crandell PROJECT NO.: G06523 TOC ELEV .: -RIG TYPE: 66 DT Geoprobe PROJECT MANAGER: Steve Kimm, CPG **GROUND ELEV.:-**METHOD OF DRILLING: Direct Push LOGGED BY: Brad Peuler STATIC WATER LVL.: 7.45' BGS **SAMPLING METHODS: Macro Cores** NOTES: Located In The Former Fill Area. Soil and Groundwater Samples Collected Static Water Level Page 1 of 1 for PNAs, Phenols, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn. GRAPHIC LOG Static Water Level Sample ID DEPTH (ft. bgl) Sample/ Revovery WELL CONSTRUCTION **DESCRIPTION DETAIL**

PROJECT: Plainwell Paper Phase II ESA

PROJECT MANAGER: Steve Kimm, CPG

SITE LOCATION: Plainwell, Michigan

PROJECT NO.: G06523

LOGGED BY: Brad Peuler

Grand Rapids (616) 575-3824 Lansing (517) 627-1141 Kalamazoo (269) 375-3824 Farmington Hills (248) 324-2090

END DATE: 9-5-06

GROUND ELEV.:-

TOC ELEV .: -

BOREHOLE LOG BORING/WELL ID: SB/TW-8

TOTAL DEPTH (ft.): 15'

START DATE: 9-5-06 DRILLING CO.: Great Lakes Geotechnical Services

> DRILLER: Dan & Tom Crandell RIG TYPE: 66 DT Geoprobe

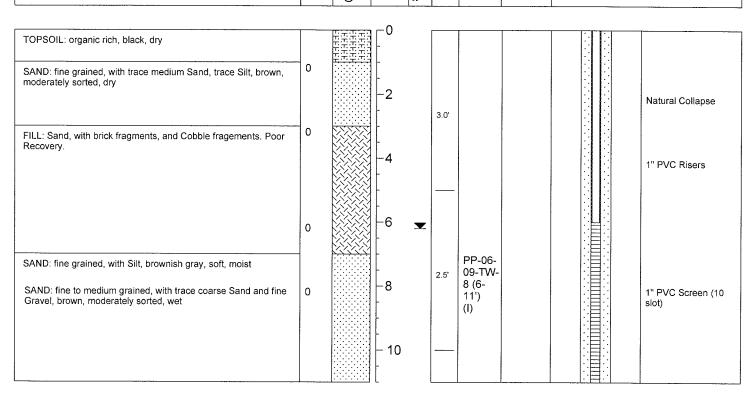
METHOD OF DRILLING: Direct Push

SAMPLING METHODS: Macro Cores

Static Water Level

STATIC WATER LVL.: 6.2' BGS

NOTES: Located North of the Mill and South of the River, Groundwater Samples Collected for


8260 Plus VOCs, PNAs, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn.

DESCRIPTION

GRAPHIC LOG DEPTH (ft. bgl) Static Water Level Sample ID Sample/ Revovery

WELL CONSTRUCTION **DETAIL**

Page 1 of 1

Grand Rapids (616) 575-3824 Lansing (517) 627-1141 Kalamazoo (269) 375-3824 Farmington Hills (248) 324-2090 **BOREHOLE LOG** BORING/WELL ID: SB/TW-9 TOTAL DEPTH (ft.): 15'

PROJECT: Plainwell Paper Phase II ESA SITE LOCATION: Plainwell, Michigan

PROJECT NO.: G06523

PROJECT MANAGER: Steve Kimm, CPG

LOGGED BY: Brad Peuler

START DATE: 9-5-06

END DATE: 9-5-06

TOC ELEV .: -

GROUND ELEV.:-

STATIC WATER LVL.: 5.4' BGS

DRILLING CO.: Great Lakes Geotechnical Services

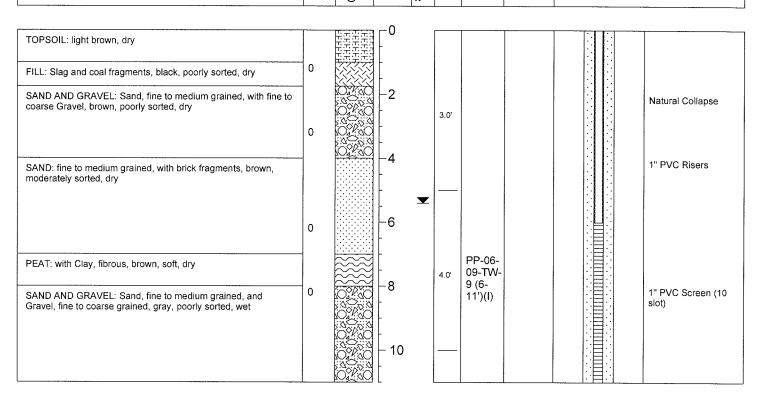
DRILLER: Dan & Tom Crandell RIG TYPE: 66 DT Geoprobe

METHOD OF DRILLING: Direct Push

SAMPLING METHODS: Macro Cores

Static Water Level

NOTES: Located North of the Mill and South of the River. Groundwater Samples Collected for 8260 Plus VOCs, PNAs, As, Cd, Cr, Cu, Pb, Hg, Se, and Zn.


DESCRIPTION

Static Water Level DEPTH (ft. bgl) Sample ID Sample/ Revovery GRAPHII LOG

Blow Counts

WELL CONSTRUCTION **DETAIL**

Page 1 of 1

APPENDIX 2

October 04, 2006

Fishbeck, Thompson, Carr & Huber Attn: Ms. Mary Crosby-Davies 1515 Arboretum Drive SE Grand Rapids, MI 49546

Project: Plainwell Paper Phase II

Dear Ms. Mary Crosby-Davies,

Enclosed is a copy of the laboratory report, comprised of the following work order(s), for test samples received by TriMatrix Laboratories:

 Work Order
 Received
 Description

 0609110
 09/07/2006
 G06523

This report relates only to the sample(s), as received. Test results are in compliance with the requirements of the National Environmental Laboratory Accreditation Conference (NELAC); any qualifications of results, including sample acceptance requirements, are explained in the Statement of Data Qualifications.

Estimates of analytical uncertainties for the test results contained within this report are available upon request.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Lisa M. Harvey Project Chemist

Enclosures(s)

The total number of pages in this report, including this page, is 112.

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-7 (8-13') (I)

Lab Sample ID: 0609110-01

Matrix:

Water

Unit:

ug/L 1

Dilution Factor: QC Batch:

0610456

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 12:22

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/12/06 By: ASC By: JMK

09/15/06

Analytical Batch: 6091813

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	5.0U	5.0	0.021
208-96-8	Acenaphthylene	5.0U	5.0	0.038
120-12-7	Anthracene	5.0U	5.0	0.030
56-55-3	Benzo(a)anthracene	1.0U	1.0	0.058
50-32-8	Benzo(a)pyrene	1.0U	1.0	0.031
205-99-2	Benzo(b)fluoranthene	1.0U	1.0	0.038
207-08-9	Benzo(k)fluoranthene	1.0U	1.0	0.048
191-24-2	Benzo(g,h,i)perylene	1.0U	1.0	0.030
59-50-7	4-Chloro-3-methylphenol	5.0U	5.0	0.024
95-57-8	2-Chlorophenol	10U	10	0.028
218-01-9	Chrysene	1.0U	1.0	0.030
53-70-3	Dibenz(a,h)anthracene	2.0U	2.0	0.019
120-83-2	2,4-Dichlorophenol	10U	10	0.022
105-67-9	2,4-Dimethylphenol	5.0U	5.0	0.54
534-52-1	4,6-Dinitro-2-methylphenol	20U	20	0.24
51-28-5	2,4-Dinitrophenol	25U	25	0.21
206-44-0	Fluoranthene	1.0 U	1.0	0.033
86-73-7	Fluorene	5.0 U	5.0	0.027
193-39-5	Indeno(1,2,3-cd)pyrene	2.0U	2.0	0.021
91-57-6	2-Methylnaphthalene	5.0U	5.0	0.022
95-48-7	2-Methylphenol	10 U	10	0.45
108-39-4	3 & 4 Methylphenol	20 U	20	0.38
91-20-3	Naphthalene	0.033J	5.0	0.022
100-02-7	4-Nitrophenol	25U	25	0.44
88-75-5	2-Nitrophenol	5.0U	5.0	0.038
87-86-5	Pentachlorophenol	1.0U	1.0	0.061
85-01-8	Phenanthrene	2.0U	2.0	0.033
108-95-2	Phenol	5.0U	5.0	0.055
129-00-0	Pyrene	5. 0 U	5.0	0.044
88-06-2	2,4,6-Trichlorophenol	4.0U	4.0	0.025
95-95-4	2,4,5-Trichlorophenol	5.0U	5.0	0.030
<u>-</u>				

Continued on next page

Page 2 of 112

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-7 (8-13') (I)

Lab Sample ID: 0609110-01

Matrix:

Water

Unit: ug/L Dilution Factor: 1

QC Batch:

0610456

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 12:22

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/12/06 By: ASC

Date Analyzed:

09/15/06 By: JMK

Analytical Batch: 6091813

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

			Analytical		
CAS Number	Analyte		Result	RL	MDL
Surrogates		% Recovery	Control Limits		
2-Fluorophenol		43	<i>16-69</i>		
Phenol-d6		29	11-49		
Nitrobenzene-d5		86	<i>26-116</i>		
2-Fluorobiphenyl		88	<i>37-123</i>		
2,4,6-Tribromophenol		98	<i>32-127</i>		
o-Terphenyl		98	<i>30-119</i>		

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-7 (8-13') (I)

Lab Sample ID:

0609110-01

Matrix:

Water

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 12:22

Sampled By:

BDP

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	R	L MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Arsenic	3.7	1.0	0.47	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Cadmium	0.20	U 0.20	0.062	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Chromium	1.0	U 1.0	0.66	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Copper	4.4	1.0	0.32	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Lead	3.4	1.0	0.24	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Mercury	0.037	J 0.20	0.037	ug/L	1	USEPA-7470A	09/13/06 KJB	0610461
Selenium	1.0	U 1.0	0.73	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Zinc	11	1.0	0.84	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386

*See Statement of Data Qualifications

Page 4 of 112

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-7 (8-13) (D)

Lab Sample ID:

0609110-02

Matrix: Unit:

Water

Dilution Factor:

1 QC Batch:

ug/L

0610456

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 12:22

Sampled By:

BDP

Received:

09/07/06 08:40 By: ASC 09/12/06

Prepared: Date Analyzed:

09/15/06 By: JMK

Analytical Batch: 6091813

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	5.0U	5.0	0.021
208-96-8	Acenaphthylene	5.0U	5.0	0.021
120-12-7	Anthracene	5.0U	5.0	0.030
56-55-3	Benzo(a)anthracene	1.0U	1.0	0.058
50-32-8	Benzo(a)pyrene	1.0U	1.0	0.030
205-99-2	Benzo(b)fluoranthene	1.0U	1.0	0.031
207-08-9	Benzo(k)fluoranthene	1.00	1.0	0.038
191-24-2	Benzo(g,h,i)perylene	1.0U	1.0	0.030
59-50-7	4-Chloro-3-methylphenol	5.0U	5.0	0.030
95-57-8	2-Chlorophenol	10U	10	0.024
218-01-9	Chrysene	1.0U	1.0	0.028
53-70-3	Dibenz(a,h)anthracene	2.0U	2.0	0.030
120-83-2	2,4-Dichlorophenol	10U	10	0.019
105-67-9	2,4-Dimethylphenol	5.0 U	5.0	0.022
534-52-1	4,6-Dinitro-2-methylphenol	20U	20	0.34
51-28-5	2,4-Dinitrophenol	25U	25	0.24
206-44-0	Fluoranthene	1.0U	1.0	0.033
86-73-7	Fluorene	5.0U	5.0	0.033
193-39-5	Indeno(1,2,3-cd)pyrene	2.0U		
91-57-6	2-Methylnaphthalene	5.0U	2.0 5.0	0.021 0.022
95-48-7	2-Methylphenol	10U	5.0 10	0.022
108-39-4	3 & 4 Methylphenol	20U	20	**
91-20-3	Naphthalene			0.38
100-02-7	4-Nitrophenol	0.026J 25U	5.0	0.022
88-75-5	2-Nitrophenol		25	0.44
87-86-5	Pentachlorophenol	5.00	5.0	0.038
85-01-8	Phenanthrene	1.0U	1.0	0.061
108-95-2		2.0U	2.0	0.033
129-00-0	Phenol	5.0U	5.0	0.055
	Pyrene	5.0U	5.0	0.044
88-06-2 95-95-4	2,4,6-Trichlorophenol	4.0U	4.0	0.025
95-95-4 Lon next nage	2,4,5-Trichlorophenol	5.0U	5.0	0.030

Continued on next page

Page 5 of 112

Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-7 (8-13) (D)

Lab Sample ID: 0609110-02

Matrix:

Client:

Water

Unit: ug/L Dilution Factor: 1

QC Batch:

0610456

Work Order:

0609110

G06523

Description: Sampled:

Sampled By:

09/06/06 12:22 **BDP**

Received:

09/07/06 08:40

Prepared:

09/12/06 By: ASC

Date Analyzed:

09/15/06 By: JMK

Analytical Batch: 6091813

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

			Analytical		
CAS Number	Analyte		Result	RL	MDL
Surrogates		% Recovery	Control Limits		
2-Fluorophenol		42	16-69		
Phenol-d6		29	11-49		
Nitrobenzene-d5		83	<i>26-116</i>		
2-Fluorobiphenyl		85	<i>37-123</i>		
2,4,6-Tribromophenol		90	<i>32-127</i>		
o-Terphenyl		95	30-119		

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-5 (10-15') (I)

Lab Sample ID: **0609110-03**

Matrix:

Water

Unit: Dilution Factor:

ug/L 1

QC Batch:

0610456

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 11:15

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/12/06 By: ASC 09/15/06

By: JMK

Analytical Batch: 6091813

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	5.0U	5,0	0.021
208-96-8	Acenaphthylene	0.0413	5.0	0.038
120-12-7	Anthracene	0.054J	5.0	0.030
56-55-3	Benzo(a)anthracene	1.0U	1.0	0.058
50-32-8	Benzo(a)pyrene	1.0U	1.0	0.031
205-99-2	Benzo(b)fluoranthene	1.0U	1.0	0.038
207-08-9	Benzo(k)fluoranthene	1.0U	1.0	0.048
191-24-2	Benzo(g,h,i)perylene	1.0U	1.0	0.030
59-50-7	4-Chloro-3-methylphenol	5.0U	5.0	0.024
95-57-8	2-Chlorophenol	10U	10	0.028
218-01-9	Chrysene	1.0U	1.0	0.030
53-70-3	Dibenz(a,h)anthracene	2.0U	2.0	0.019
120-83-2	2,4-Dichlorophenol	10U	10	0.022
105-67-9	2,4-Dimethylphenol	5.0U	5.0	0.54
534-52-1	4,6-Dinitro-2-methylphenol	20U	20	0.24
51-28-5	2,4-Dinitrophenol	25U	25	0.21
206-44-0	Fluoranthene	0.113	1.0	0.033
86-73-7	Fluorene	0.034J	5.0	0.027
193-39-5	Indeno(1,2,3-cd)pyrene	2.0U	2.0	0.021
91-57-6	2-Methylnaphthalene	0.059J	5.0	0.022
95-48-7	2-Methylphenol	10U	10	0.45
108-39-4	3 & 4 Methylphenol	20U	20	0.38
91-20-3	Naphthalene	0.0763	5.0	0.022
100-02-7	4-Nitrophenol	25U	25	0.44
88-75-5	2-Nitrophenol	5.0U	5.0	0.038
87-86-5	Pentachlorophenol	1.00	1.0	0.061
85-01-8	Phenanthrene	0.31J	2.0	0.033
108-95-2	Phenol	5.00	5.0	0.055
129-00-0	Pyrene	0.074J	5.0	0.044
88-06-2	2,4,6-Trichlorophenol	4.0U	4.0	0.025
95-95-4	2,4,5-Trichlorophenol	5.0U	5.0	0.030
on nort nago				

Continued on next page

Page 7 of 112

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-5 (10-15') (I)

Lab Sample ID: **0609110-03**

Matrix:

Water ug/L

Dilution Factor: 1

QC Batch:

Unit:

0610456

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 11:15

Sampled By:

BDP

Received: Prepared:

09/07/06 08:40 09/12/06

By: ASC

Date Analyzed:

09/15/06

By: JMK

Analytical Batch: 6091813

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

			Analytical		
CAS Number	Analyte		Result	RL	MDL
Surrogates		% Recovery	Control Limits		
2-Fluorophenol		48	16-69		
Phenol-d6		31	11-49		
Nitrobenzene-d5		88	<i>26-116</i>		
2-Fluorobiphenyl		90	<i>37-123</i>		
2,4,6-Tribromophenol		105	32-127		
o-Terphenyl		99	30-119		

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-5 (10-15') (I)

Lab Sample ID: 0609110-03

Matrix:

Water

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 11:15

Sampled By:

BDP

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Arsenic	0.47	J	1.0	0.47	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Chromium	1.0	U	1.0	0.66	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
*Copper	0.80	J	1.0	0.32	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Lead	0.67	J	1.0	0.24	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Mercury	0.20	U	0.20	0.037	ug/L	1	USEPA-7470A	09/13/06 KJB	0610461
Selenium	1.0	U	1.0	0.73	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Zinc	13		1.0	0.84	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386

Page 9 of 112

^{*}See Statement of Data Qualifications

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-3 (8-13') (I)

Lab Sample ID: 0609110-04

Matrix:

Water

Unit: Dilution Factor: ug/L 1

QC Batch:

0610427

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 09:50

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/11/06 By: ASC

Date Analyzed:

09/13/06 By: JLW

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

			Analytical		
CAS Number	Analyte	· · · · · · · · · · · · · · · · · · ·	Result	RL	MDL
12674 11 2	DCD 1016				
12674-11-2	PCB-1016		0.20U	0.20	0.046
11104-28-2	PCB-1221		0.20U	0.20	0.053
11141-16-5	PCB-1232		0.20∪	0.20	0.050
53469-21-9	PCB-1242		0.20 ∪	0.20	0.053
12672-29-6	PCB-1248		0.20U	0.20	0.024
11097-69-1	PCB-1254		0.20U	0.20	0.038
11096-82-5	PCB-1260		0.20U	0.20	0.045
Surrogates		% Recovery	Control Limits		
Decachlorobiphenyl		93	12-120		
Tetrachioro-m-xylene	1	65	<i>36-114</i>		

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-3 (8-13') (I)

Lab Sample ID: **0609110-04**

Matrix:

Water

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 09:50

Sampled By:

BDP

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
*Arsenic	25		1.0	0.47	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Cadmium	0.074	3	0.20	0.062	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Chromium	1.0	U	1.0	0.66	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Copper	0.65	3	1.0	0.32	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Lead	0.62	3	1.0	0.24	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Mercury	0.20	U	0.20	0.037	ug/L	1	USEPA-7470A	09/13/06 KJB	0610461
Selenium	1.0	U	1.0	0.73	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
*Zinc	7.6		1.0	0.84	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386

*See Statement of Data Qualifications

Page 11 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: **PP-06-09-TW-3 (8-13') (D)**

Lab Sample ID: 0609110-05

Matrix:

Water

Unit: Dilution Factor:

ug/L 1

QC Batch:

0610427

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 09:50

Sampled By:

BDP

Received:

09/07/06 08:40

09/11/06

Prepared: Date Analyzed:

09/13/06

0.20U

By: ASC By: JLW

0.20

0.045

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

Analytical

CAS Number Analyte Result RL MDL 12674-11-2 PCB-1016 0.20U 0.20 0.046 11104-28-2 PCB-1221 0.20 U 0.20 0.053 11141-16-5 PCB-1232 0.20 U 0.20 0.050 53469-21-9 PCB-1242 0.20 U 0.20 0.053 12672-29-6 PCB-1248 $0.20\,U$ 0.20 0.024 11097-69-1 PCB-1254 0.20 U 0.20 0.038 11096-82-5 PCB-1260

Surrogates % Recovery Control Limits Decachlorobiphenyl 96 12-120 Tetrachloro-m-xylene 78 36-114

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-3 (8-13') (D)

Lab Sample ID: 0609110-05

Matrix:

Water

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 09:50

Sampled By:

BDP

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	***************************************	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Arsenic	26		1.0	0.47	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Cadmium	0.11	J	0.20	0.062	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Chromium	1.0	U	1.0	0.66	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Copper	0.71	J	1.0	0.32	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Lead	0.63	J	1.0	0.24	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Mercury	0.20	U	0.20	0.037	ug/L	1	USEPA-7470A	09/13/06 KJB	0610461
Selenium	1.0	U	1.0	0.73	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
*Zinc	11		1.0	0.84	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386

Page 13 of 112

^{*}See Statement of Data Qualifications

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-6 (10-15') (I)

Lab Sample ID: 0609110-06

Matrix:

Unit:

Water ug/L

Dilution Factor: 1

QC Batch: 0610427

Work Order:

0609110

Description: G

G06523

Sampled: Sampled By: 09/06/06 13:50

Received:

BDP -

eceiveu:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: ASC

09/13/06 By: JLW

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

Analytical CAS Number Analyte Result RL MDL 12674-11-2 PCB-1016 0.20 U 0.20 0.046 11104-28-2 PCB-1221 0.20U 0.20 0.053 11141-16-5 PCB-1232 0.20U 0.20 0.050 53469-21-9 PCB-1242 0.20 U 0.20 0.053 12672-29-6 PCB-1248 0.20 U 0.20 0.024 11097-69-1 PCB-1254 0.20U 0.20 0.038 11096-82-5 PCB-1260 0.20U 0.20 0.045 Surrogates % Recovery **Control Limits** Decachlorobiphenyl 98 12-120 Tetrachloro-m-xylene 79 36-114

Page 14 of 112

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-6 (10-15') (I)

Lab Sample ID: **0609110-06**

Matrix:

Water

Unit:

ug/L

Dilution Factor: 1 QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 13:50

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM By: JDM

09/11/06

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL.	MDL
67-64-1	Acetone	20U	20	1.1
107-13-1	Acrylonitrile	2.0U	2.0	0.45
71-43-2	Benzene	1.0U	1.0	0.065
108-86-1	Bromobenzene	1.0U	1.0	0.062
74-97-5	Bromochloromethane	1.0U	1.0	0.13
75-27-4	Bromodichloromethane	1.0U	1.0	0.11
75-25-2	Bromoform	1.0U	1.0	0.15
74-83-9	Bromomethane	5.0U	5.0	0.25
104-51-8	n-Butylbenzene	1.0U	1.0	0.34
135-98-8	sec-Butylbenzene	1.0U	1.0	0.28
98-06-6	tert-Butylbenzene	1.0U	1.0	0.12
75-15-0	Carbon Disulfide	1.0U	1.0	0.21
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.081
108-90-7	Chlorobenzene	1. 0U	1.0	0.11
75-00-3	Chloroethane	5.0U	5.0	0.16
67-66-3	Chloroform	1.0 U	1.0	0.17
74-87-3	Chloromethane	5.0U	5.0	0.18
96-12-8	1,2-Dibromo-3-chloropropane	5.0 U	5.0	0.59
124-48-1	Dibromochloromethane	1.0 U	1.0	0.13
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.086
74-95-3	Dibromomethane	1.0U	1.0	0.18
110-57-6	trans-1,4-Dichloro-2-butene	1.0 U	1.0	0.46
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.29
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.26
75-71-8	Dichlorodifluoromethane	5.0U	5.0	0.19
75-34-3	1,1-Dichloroethane	1.0U	1.0	0.16
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.086
75-35-4	1,1-Dichloroethene	1.0U	1.0	0.13

Continued on next page

Page 15 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-6 (10-15') (I)

Lab Sample ID: 0609110-06

Matrix:

Unit:

Water

Dilution Factor:

ug/L 1

QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 13:50

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM

09/11/06

By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
456.50.2			,	
156-59-2	cis-1,2-Dichloroethene	1.0U	1.0	0.16
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.15
78-87-5	1,2-Dichloropropane	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.072
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.087
100-41-4	Ethylbenzene	1.0U	1.0	0.11
60-29-7	Ethyl Ether	5.0U	5.0	0.19
591-78-6	2-Hexanone	5.0U	5.0	0.40
74-88-4	Iodomethane	1.0U	1.0	0.31
98-82-8	Isopropylbenzene	1.0U	1.0	0.078
99-87-6	4-Isopropyltoluene	5.00	5.0	0.14
1634-04-4	Methyl tert-Butyl Ether	5.0U	5.0	0.074
75-09-2	Methylene Chloride	5.0 U	5.0	0.21
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.57
91-57-6	2-Methylnaphthalene	5.0U	5.0	0.25
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.19
91-20-3	Naphthalene	5.0 U	5.0	0.27
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.25
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.14
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.12
127-18-4	Tetrachloroethene	1.0U	1.0	0.13
109-99-9	Tetrahydrofuran	5.0U	5.0	0.86
108-88-3	Toluene	1.0U	1.0	0.26
87-61-6	1,2,3-Trichlorobenzene	5.0U	5.0	0.32
120-82-1	1,2,4-Trichlorobenzene	5.0U	5.0	0.36
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.15
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.11
79-01-6	Trichloroethene	1.0U	1.0	0.14
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.16
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.13
on next page	-4-4- manager altanta	1.00	1.0	0.13

Continued on next page

Page 16 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-6 (10-15') (I)

Lab Sample ID: 0609110-06

Matrix:

Water

Unit: Dilution Factor: ug/L 1

QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 13:50

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/11/06

Date Analyzed:

By: JDM By: JDM 09/11/06

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

	Analytical		
Analyte	Result	RL	MDL
1,2,4-Trimethylbenzene	1.0U	1.0	0.29
1,3,5-Trimethylbenzene	1.0U	1.0	0.22
Vinyl Chloride	1.0∪	1.0	0.15
Xylene, Meta + Para	2.0U	2.0	0.16
Xylene, Ortho	1.0U	1.0	0.097
% Recovery	Control Limits		
98	<i>79-124</i>		
96	<i>75-128</i>		
97	<i>87-113</i>		
100	70-121		
	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride Xylene, Meta + Para Xylene, Ortho **Recovery* 98 96 97	Analyte Result 1,2,4-Trimethylbenzene 1.0U 1,3,5-Trimethylbenzene 1.0U Vinyl Chloride 1.0U Xylene, Meta + Para 2.0U Xylene, Ortho 1.0U 96 79-124 96 75-128 97 87-113	Analyte Result RL 1,2,4-Trimethylbenzene 1.0U 1.0 1,3,5-Trimethylbenzene 1.0U 1.0 Vinyl Chloride 1.0U 1.0 Xylene, Meta + Para 2.0U 2.0 Xylene, Ortho 1.0U 1.0 **Recovery** Control Limits** 98 79-124 96 75-128 97 87-113

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-6 (10-15') (I)

Lab Sample ID: 0609110-06

Matrix:

Unit:

Water ug/L

Dilution Factor: 1

QC Batch:

0610456

Work Order:

0609110

Description:

G06523

Sampled: Sampled By: 09/06/06 13:50

Received:

BDP

Prepared:

09/07/06 08:40 09/12/06 By: ASC

Date Analyzed:

09/16/06 By: JMK

Analytical Batch: 6091813

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
		1XCJ41C		1106
83-32-9	Acenaphthene	5.0U	5.0	0.021
208-96-8	Acenaphthylene	5.0U	5.0	0.038
120-12-7	Anthracene	5.0U	5.0	0.030
56-55-3	Benzo(a)anthracene	1.0U	1.0	0.058
50-32-8	Benzo(a)pyrene	1.0U	1.0	0.031
205-99-2	Benzo(b)fluoranthene	1.0U	1.0	0.038
207-08-9	Benzo(k)fluoranthene	1.0U	1.0	0.048
191-24-2	Benzo(g,h,i)perylene	1.0U	1.0	0.030
218-01-9	Chrysene	1.0U	1.0	0.030
53-70-3	Dibenz(a,h)anthracene	2.0U	2.0	0.019
206-44-0	Fluoranthene	1. 0 U	1.0	0.033
86-73-7	Fluorene	5. 0 U	5.0	0.027
193-39-5	Indeno(1,2,3-cd)pyrene	2.0U	2.0	0.021
91-57-6	2-Methylnaphthalene	5. 0 U	5.0	0.022
91-20-3	Naphthalene	0.0343	5.0	0.022
85-01-8	Phenanthrene	2.0U	2.0	0.033
129-00-0	Pyrene	5.0U	5.0	0.044
Surrogates	% Recovery	Control Limits		
Nitrobenzene-d5	81	<i>26-116</i>		
2-Fluorobiphenyl	83	<i>37-123</i>		
o-Terphenyl	94	30-119		

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-6 (10-15') (I)

Lab Sample ID: **0609110-06**

Matrix:

Water

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 13:50

Sampled By:

BDP

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	By	QC Batch
Arsenic	1.0	U	1.0	0.47	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Chromium	1.0	U	1.0	0.66	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
*Copper	0.95	J	1.0	0.32	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Lead	0.64	J	1.0	0.24	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Mercury	0.20	U	0.20	0.037	ug/L	1	USEPA-7470A	09/13/06	КЈВ	0610461
Selenium	0.96	J	1.0	0.73	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
*Zinc	6.5		1.0	0.84	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386

^{*}See Statement of Data Qualifications

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-TW-6 (10-15') (I)

Sampled:

09/06/06 13:50

Lab Sample ID: 0609110-06

Sampled By:

BDP

Matrix:

Water

Received:

09/07/06 08:40

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Chloride	28	1.0	0.31	mg/L	1	USEPA-325.2	09/15/06 VAS	0610545

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-6 (10-15') (D)

Lab Sample ID: 0609110-07

Matrix: Water

Unit: ug/L Dilution Factor: 1

QC Batch: 0610570 Work Order:

0609110

Description:

G06523

Sampled:

Received:

09/06/06 13:50

Sampled By:

BDP

Prepared:

09/07/06 08:40 09/11/06 By: JDM

Date Analyzed:

09/11/06

By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL.	MDI
	Analyto	Result	- KL	MDL
67-64-1	Acetone	20U	20	1.1
107-13-1	Acrylonitrile	2.0U	2.0	0.45
71-43-2	Benzene	1.0U	1.0	0.065
108-86-1	Bromobenzene	1.0U	1.0	0.062
74-97-5	Bromochloromethane	1.0U	1.0	0.13
75-27-4	Bromodichloromethane	1.0U	1.0	0.11
75-25 - 2	Bromoform	1.0U	1.0	0.15
74-83-9	Bromomethane	5.0U	5.0	0.25
104-51-8	n-Butylbenzene	1.0U	1.0	0.34
135 -9 8-8	sec-Butylbenzene	1.0U	1.0	0.28
98-06-6	tert-Butylbenzene	1.0U	1.0	0.12
75-15-0	Carbon Disulfide	1.0U	1.0	0.21
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.081
108-90-7	Chlorobenzene	1.0U	1.0	0.11
75-00-3	Chloroethane	5.0U	5.0	0.16
67-66-3	Chloroform	1.0U	1.0	0.17
74-87-3	Chloromethane	5.0U	5.0	0.18
96-12-8	1,2-Dibromo-3-chloropropane	5.0U	5.0	0.59
124-48-1	Dibromochloromethane	1.0U	1.0	0.13
106-93-4	1,2-Dibromoethane	1.0U	1.0	0.086
74-95-3	Dibromomethane	1.0U	1.0	0.18
110-57-6	trans-1,4-Dichloro-2-butene	1.0 U	1.0	0.46
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.29
541-73-1	1,3-Dichlorobenzene	1.00	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.26
75-71-8	Dichlorodifluoromethane	5.0U	5.0	0.19
75-34-3	1,1-Dichloroethane	1.0U	1.0	0.16
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.086
75-35-4	1,1-Dichloroethene	1.0U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0U	1.0	0.16
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.15

Continued on next page

Page 21 of 112

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-6 (10-15') (D)

Lab Sample ID: 0609110-07

Matrix: Water

Unit: ug/L Dilution Factor: 1

QC Batch: 0610570

Work Order:

0609110

Description: G0

G06523

Sampled:

09/06/06 13:50

Sampled By: Received:

09/07/06 08:40

BDP

Prepared:

09/11/06 By: JDM 09/11/06 By: JDM

Date Analyzed: 09/11/06 Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical	D.I	ирі
CAS Number	Allalyte	Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.00	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.072
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.087
100-41-4	Ethylbenzene	1.0U	1.0	0.11
60-29-7	Ethyl Ether	5.0U	5.0	0.19
591-78-6	2-Hexanone	5.0U	5.0	0.40
74-88-4	Iodomethane	1.0U	1.0	0.31
98-82-8	Isopropylbenzene	1.0U	1.0	0.078
99-87-6	4-Isopropyltoluene	5.0U	5.0	0.14
1634-04-4	Methyl tert-Butyl Ether	5.0U	5.0	0.074
75-09-2	Methylene Chloride	5.0U	5.0	0.21
78-93-3	2-Butanone (MEK)	5.0U	5.0	0.57
91-57-6	2-Methylnaphthalene	5.0U	5.0	0.25
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.19
91-20-3	Naphthalene	5.0U	5.0	0.27
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.25
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.14
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.12
127-18-4	Tetrachloroethene	1.0U	1.0	0.13
109-99-9	Tetrahydrofuran	5.00	5.0	0.86
108-88-3	Toluene	1.0U	1.0	0.26
87-61-6	1,2,3-Trichlorobenzene	5.0U	5.0	0.32
120-82-1	1,2,4-Trichlorobenzene	5.0U	5.0	0.36
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.15
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.11
79-01-6	Trichloroethene	1.0U	1.0	0.14
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.16
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.13
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.29

Continued on next page

Page 22 of 112

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: **PP-06-09-TW-6 (10-15') (D)**

Lab Sample ID: 0609110-07

Matrix: Water Unit: ug/L

Unit: ug/L Dilution Factor: 1

QC Batch: 0610570

Work Order:

0609110

Description: G06

G06523

BDP

Sampled:

09/06/06 13:50

Sampled By:

Received:

09/07/06 08:40

Prepared:

09/11/06 By: JDM 09/11/06 By: JDM

Date Analyzed: 09/11/06

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
108-67-8	1,3,5-Trimethylbenzene	1.0U	1.0	0.22
75-01-4	Vinyl Chloride	1.0U	1.0	0.15
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.16
95-47-6	Xylene, Ortho	1.0U	1.0	0.097
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	99	<i>79-124</i>		
1,2-Dichloroethane-d4	97	<i>75-128</i>		
Toluene-d8	97	<i>87-113</i>		
4-Bromofluorobenzene	101	<i>70-121</i>		

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-TW-6 (10-15') (D)

Sampled:

09/06/06 13:50

Lab Sample ID: 0609110-07

Sampled By:

BDP

Matrix:

Water

Received:

09/07/06 08:40

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Chloride	28	1.0	0.31	mg/L	1	USEPA-325.2	09/15/06 VAS	0610545

Client: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TB

Lab Sample ID: 0609110-08

Matrix:

Project:

Water

Unit: ug/L Dilution Factor: 1

QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 00:00

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM 09/11/06 By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL	MDL
		Result	ILL.	1100
67-64-1	Acetone	20U	20	1.1
107-13-1	Acrylonitrile	2.0U	2.0	0.45
71-43-2	Benzene	1.0U	1.0	0.065
108-86-1	Bromobenzene	1.0∪	1.0	0.062
74-97-5	Bromochloromethane	1.0U	1.0	0.13
75-27-4	Bromodichloromethane	1.0U	1.0	0.11
75-25-2	Bromoform	1.0U	1.0	0.15
74-83-9	Bromomethane	5.0U	5.0	0.25
104-51-8	n-Butylbenzene	1.0U	1.0	0.34
135-98-8	sec-Butylbenzene	1.0U	1.0	0.28
98-06-6	tert-Butylbenzene	1.0U	1.0	0.12
75-15-0	Carbon Disulfide	1.0U	1.0	0.21
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.081
108-90-7	Chlorobenzene	1.0U	1.0	0.11
75-00-3	Chloroethane	5.0U	5.0	0.16
67-66-3	Chloroform	1.0U	1.0	0.17
74-87-3	Chloromethane	5.00	5.0	0.18
96-12-8	1,2-Dibromo-3-chloropropane	5.0U	5.0	0.59
124-48-1	Dibromochloromethane	1.0U	1.0	0.13
106-93-4	1,2-Dibromoethane	1.0U	1.0	0.086
74-95-3	Dibromomethane	1.0U	1.0	0.18
110-57-6	trans-1,4-Dichloro-2-butene	1.0U	1.0	0.46
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.29
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.26
75-71-8	Dichlorodifluoromethane	5.0U	5.0	0.19
75-34-3	1,1-Dichloroethane	1.0U	1.0	0.16
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.086
75-35-4	1,1-Dichloroethene	1.0U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0U	1.0	0.16
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.15

Continued on next page

Page 25 of 112

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TB

Lab Sample ID: 0609110-08

Matrix:

Unit:

Water ug/L

Dilution Factor: 1

QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 00:00

Sampled By: **BDP**

Received:

09/07/06 08:40

Prepared:

09/11/06 By: JDM

Date Analyzed:

09/11/06 By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.072
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.087
100-41-4	Ethylbenzene	1.0U	1.0	0.11
60-29-7	Ethyl Ether	5.0U	5.0	0.19
591-78-6	2-Hexanone	5.0U	5.0	0.40
74-88-4	Iodomethane	1.0U	1.0	0.31
98-82-8	Isopropylbenzene	1.0U	1.0	0.078
99-87-6	4-Isopropyltoluene	5.0U	5.0	0.14
1634-04-4	Methyl tert-Butyl Ether	5.0U	5.0	0.074
75-09-2	Methylene Chloride	5.0U	5.0	0.21
78-93-3	2-Butanone (MEK)	5.0U	5.0	0.57
91-57-6	2-Methylnaphthalene	5.0U	5.0	0.25
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.19
91-20-3	Naphthalene	5.0U	5.0	0.27
103-65-1	n-Propylbenzene	1.0 U	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.25
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.14
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.12
127-18-4	Tetrachloroethene	1.0U	1.0	0.13
109-99-9	Tetrahydrofuran	5.0U	5.0	0.86
108-88-3	Toluene	1.0U	1.0	0.26
87-61-6	1,2,3-Trichlorobenzene	5.0U	5.0	0.32
120-82-1	1,2,4-Trichlorobenzene	5.0U	5.0	0.36
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.15
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.11
79-01-6	Trichloroethene	1.0U	1.0	0.14
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.16
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.13
95-63- 6	1,2,4-Trimethylbenzene	1.00	1.0	0.29

Continued on next page

Page 26 of 112

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TB

Lab Sample ID: 0609110-08

Matrix: Unit:

Water ug/L

Dilution Factor: 1

QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 00:00

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM

09/11/06

By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
108-67-8	1,3,5-Trimethylbenzene	1.0U	1.0	0.22
75-01-4	Vinyl Chloride	1.0U	1.0	0.15
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.16
95-47-6	Xylene, Ortho	1.0U	1.0	0.097
Surrogates	% Recove	ery Control Limits		
Dibromofluoromethane	98	<i>79-124</i>		
1,2-Dichloroethane-d4	95	<i>75-128</i>		
Toluene-d8	96	<i>87-113</i>		
4-Bromofluorobenzene	100	<i>70-121</i>		

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: **PP-06-09-TW-8 (6-11') (I)** Samp

Lab Sample ID: 0609110-09

Matrix: Water Unit: ug/L

Dilution Factor: 1

QC Batch: 0610570

Work Order:

0609110

Description: G

G06523

Sampled:

Received:

09/06/06 15:00

Sampled By:

BDP

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM 09/11/06 By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL	MDL
67-64-1	Acetone	20U	20	1.1
107-13-1	Acrylonitrile	2.0U	2.0	0.45
71-43-2	Benzene	1.0U	1.0	0.065
108-86-1	Bromobenzene	1.0U	1.0	0.062
74-97-5	Bromochloromethane	1.0U	1.0	0.13
75-27-4	Bromodichloromethane	1.0U	1.0	0.11
75-25-2	Bromoform	1.0U	1.0	0.15
74-83-9	Bromomethane	5.0U	5.0	0.25
104-51-8	n-Butylbenzene	1.0U	1.0	0.34
135-98-8	sec-Butylbenzene	1.0U	1.0	0.28
98-06-6	tert-Butylbenzene	1.0U	1.0	0.12
75-15-0	Carbon Disulfide	1.0U	1.0	0.21
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.081
108-90-7	Chlorobenzene	1.0U	1.0	0.11
75-00-3	Chloroethane	5.0U	5.0	0.16
67-66-3	Chloroform	1.0 U	1.0	0.17
74-87-3	Chloromethane	5.0U	5.0	0.18
96-12-8	1,2-Dibromo-3-chloropropane	5. 0 U	5.0	0.59
124-48-1	Dibromochloromethane	1.0U	1.0	0.13
106-93-4	1,2-Dibromoethane	1. 0 U	1.0	0.086
74-95-3	Dibromomethane	1.0U	1.0	0.18
110-57-6	trans-1,4-Dichloro-2-butene	1.0U	1.0	0.46
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.29
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.26
75-71-8	Dichlorodifluoromethane	5.0U	5.0	0.19
75-34-3	1,1-Dichloroethane	1.0U	1.0	0.16
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.086
75-35-4	1,1-Dichloroethene	1.0U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0U	1.0	0.16
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.15

Continued on next page

Page 28 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Cheric Jampie I

Client Sample ID: PP-06-09-TW-8 (6-11') (I)

Lab Sample ID:

0609110-09

Matrix:

Water

Unit: Dilution Factor: ug/L 1

QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 15:00

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM

09/11/06

By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
		KCOATE	1/2	11124
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.00	1.0	0.072
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.087
100-41-4	Ethylbenzene	1.0U	1.0	0.11
60-29-7	Ethyl Ether	5.00	5.0	0.19
591-78-6	2-Hexanone	5.00	5.0	0.40
74-88-4	Iodomethane	1.0U	1.0	0.31
98-82-8	Isopropylbenzene	1.0U	1.0	0.078
99-87-6	4-Isopropyltoluene	5.0U	5.0	0.14
1634-04-4	Methyl tert-Butyl Ether	5.0U	5.0	0.074
75-09-2	Methylene Chloride	5.0U	5.0	0.21
78-93-3	2-Butanone (MEK)	5.0U	5.0	0.57
91-57-6	2-Methylnaphthalene	5.0U	5.0	0.25
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.19
91-20-3	Naphthalene	5.0U	5.0	0.27
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.0 U	1.0	0.25
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.14
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.12
127-18-4	Tetrachloroethene	0.38J	1.0	0.13
109-99-9	Tetrahydrofuran	5.0U	5.0	0.86
108-88-3	Toluene	0.29J	1.0	0.26
87-61-6	1,2,3-Trichlorobenzene	5.0U	5.0	0.32
120-82-1	1,2,4-Trichlorobenzene	5.0U	5.0	0.36
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.15
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.11
79-01-6	Trichloroethene	1.0U	1.0	0.14
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.16
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.13
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.29

Continued on next page

Page 29 of 112

Client: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-8 (6-11') (I)

Lab Sample ID: 0609110-09

Matrix:

Project:

Water ug/L

Unit:

Dilution Factor: 1

QC Batch: 0610570 Work Order:

0609110

Description:

G06523

BDP

Sampled:

09/06/06 15:00

Sampled By:

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06

By: JDM 09/11/06 By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

Analytical CAS Number Analyte Result RL MDL 108-67-8 1,3,5-Trimethylbenzene 1.0U 1.0 0.22 75-01-4 Vinyl Chloride 1.0U 1.0 0.15 136777-61-2 Xylene, Meta + Para 0.26J 2.0 0.16 95-47-6 Xylene, Ortho 1.0U 0.097 1.0 ts

% Recovery	Control Limits
102	<i>79-124</i>
97	<i>75-128</i>
97	<i>87-113</i>
99	<i>70-121</i>
	102 97 97

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: **PP-06-09-TW-8 (6-11') (I)**

Lab Sample ID: 0609110-09

Matrix: Water

Unit: ug/L Dilution Factor: 1

QC Batch: 0610396

06

0609110

Work Order: Description:

G06523

BDP

Sampled:

09/06/06 15:00

Sampled By: Received:

09/07/06 08:40

Prepared:

09/11/06 By: CAR

Date Analyzed:

09/12/06 By: JMK

Analytical Batch: 6091247

Semivolatile Organic Compounds by EPA Method 8270C

		Analytical		
CAS Number	Analyte	Result	RL	MDL
83-32-9	Acenaphthene	5.0U	5.0	0.021
208-96-8	Acenaphthylene	5.0 U	5.0	0.038
120-12-7	Anthracene	5.0U	5.0	0.030
56-55-3	Benzo(a)anthracene	1.0U	1.0	0.058
50-32-8	Benzo(a)pyrene	1.0U	1.0	0.031
205-99-2	Benzo(b)fluoranthene	1.0U	1.0	0.038
207-08-9	Benzo(k)fluoranthene	1.0U	1.0	0.048
191-24-2	Benzo(g,h,i)perylene	1.0U	1.0	0.030
218-01-9	Chrysene	1.0U	1.0	0.030
53-70-3	Dibenz(a,h)anthracene	2.0U	2.0	0.019
206-44-0	Fluoranthene	1.0U	1.0	0.033
86-73-7	Fluorene	5.0 U	5.0	0.027
193-39-5	Indeno(1,2,3-cd)pyrene	2.0 U	2.0	0.021
91-57-6	2-Methylnaphthalene	5.0 U	5.0	0.022
91-20-3	Naphthalene	0.055J	5.0	0.022
85-01-8	Phenanthrene	2.0U	2.0	0.033
129-00-0	Pyrene	5. 0 U	5.0	0.044
Surrogates	% Recovery	Control Limits		
Nitrobenzene-d5	82	<i>26-116</i>		
2-Fluorobiphenyl	82	<i>37-123</i>		
o-Terphenyl	97	30-119		

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-8 (6-11') (I)

Lab Sample ID: 0609110-09

Matrix:

Water

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 15:00

Sampled By:

BDP

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Arsenic	2.2		1.0	0.47	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Cadmium	0.46		0.20	0.062	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Chromium	1.0	U	1.0	0.66	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Copper	26		1.0	0.32	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Lead	5.4		1.0	0.24	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Mercury	0.21		0.20	0.037	ug/L	1	USEPA-7470A	09/13/06 KJB	0610461
Selenium	1.0	U	1.0	0.73	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386
Zinc	50		1.0	0.84	ug/L	1	USEPA-6020A	09/15/06 JMF	0610386

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-9 (6-11') (I)

Lab Sample ID: 0609110-10

Matrix: Water Unit: ug/L

Dilution Factor: 1

QC Batch: 0610570

Work Order: **0609110**

Description: G06523

Sampled: 09

09/06/06 15:40

Sampled By: BDP

09/07/06 08:40

Prepared:

Received:

09/11/06 By: JDM

Date Analyzed: 09/11/06

/06 By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL	MDL
67-64-1	Acatana	20ป	20	4.4
107-13-1	Acetone Acrylonitrile	2.0U	20	1.1
71-43-2	•		2.0	0.45
	Benzene	1.00	1.0	0.065
108-86-1	Bromobenzene	1.0U	1.0	0.062
74-97-5	Bromochloromethane	1.0U	1.0	0.13
75-27-4	Bromodichloromethane	1.0U	1.0	0.11
75-25-2	Bromoform	1.0U	1.0	0.15
74-83-9	Bromomethane	5.0 U	5.0	0.25
104-51-8	n-Butylbenzene	1.0U	1.0	0.34
135-98-8	sec-Butylbenzene	1.0U	1.0	0.28
98-06-6	tert-Butylbenzene	1.0U	1.0	0.12
75-15-0	Carbon Disulfide	1.0U	1.0	0.21
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.081
108-90-7	Chlorobenzene	1.0U	1.0	0.11
75-00-3	Chloroethane	5.0 U	5.0	0.16
67-66-3	Chloroform	1.0U	1.0	0.17
74-87-3	Chloromethane	5 . 0U	5.0	0.18
96-12-8	1,2-Dibromo-3-chloropropane	5.0U	5.0	0.59
124-48-1	Dibromochloromethane	1.0U	1.0	0.13
106-93-4	1,2-Dibromoethane	1.0U	1.0	0.086
74-95-3	Dibromomethane	1.0U	1.0	0.18
110-57-6	trans-1,4-Dichloro-2-butene	1.0U	1.0	0.46
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.29
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.15
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.26
75-71-8	Dichlorodifluoromethane	5.0U	5.0	0.19
75-34-3	1,1-Dichloroethane	1.0U	1.0	0.16
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.086
75-35-4	1,1-Dichloroethene	1.0U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0U	1.0	0.16
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.15

Continued on next page

Page 33 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-9 (6-11') (I)

Lab Sample ID: 0609110-10

Matrix:

Water

Unit: Dilution Factor:

ug/L 1

QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

Received:

09/06/06 15:40

Sampled By:

BDP

Prepared:

09/07/06 08:40 09/11/06

Date Analyzed:

By: JDM 09/11/06 By: JDM

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical		MDI
CAS Humber	Allalyte	Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.072
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.087
100-41-4	Ethylbenzene	1.0U	1.0	0.11
60-29-7	Ethyl Ether	5.00	5.0	0.19
591-78-6	2-Hexanone	5.0U	5.0	0.40
74-88-4	Iodomethane	1.0U	1.0	0.31
98-82-8	Isopropylbenzene	1.0∪	1.0	0.078
99-87-6	4-Isopropyltoluene	5.0U	5.0	0.14
1634-04-4	Methyl tert-Butyl Ether	5.0∜	5.0	0.074
75-09-2	Methylene Chloride	5.0U	5.0	0.21
78-93-3	2-Butanone (MEK)	5.0U	5.0	0.57
91-57-6	2-Methylnaphthalene	5.0U	5.0	0.25
108-10-1	4-Methyl-2-pentanone (MIBK)	5 . 0U	5.0	0.19
91-20-3	Naphthalene	5.0U	5.0	0.27
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.25
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.14
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.12
127-18-4	Tetrachloroethene	1.0∪	1.0	0.13
109-99-9	Tetrahydrofuran	5.00	5.0	0.86
108-88-3	Toluene	1.0U	1.0	0.26
87-61-6	1,2,3-Trichlorobenzene	5.0U	5.0	0.32
120-82-1	1,2,4-Trichlorobenzene	5.0U	5.0	0.36
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.15
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.11
79-01-6	Trichloroethene	1.0U	1.0	0.14
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.16
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.13
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.29

Continued on next page

Page 34 of 112

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-9 (6-11') (I)

Lab Sample ID: 0609110-10

Matrix: Unit:

Water ug/L

Dilution Factor: 1

QC Batch:

0610570

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 15:40

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/11/06 By: JDM

Date Analyzed:

By: JDM 09/11/06

Analytical Batch: 6091422

Volatile Organics by EPA Method 8260B (Continued)

			Analytical		
CAS Number	Analyte		Result	RL	MDL
108-67-8	1,3,5-Trimethylbenzene		1.0U	1.0	0.22
75-01-4	Vinyl Chloride		1.0U	1.0	0.15
136777-61-2	Xylene, Meta + Para		0.183	2.0	0.16
95-47-6	Xylene, Ortho		1.0U	1.0	0.097
Surrogates	% F	Recovery	Control Limits		
Dibromofluoromethane		100	<i>79-124</i>		
1,2-Dichloroethane-d4		95	<i>75-128</i>		
Toluene-d8		98	87-113		
4-Bromofluorobenzene		100	70-121		

Client: Fishbec

Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-9 (6-11') (I)

Lab Sample ID: 0609110-10

Matrix:

Water

Unit: Dilution Factor:

ug/L 1

QC Batch:

0610396

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 15:40

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/11/06 By: CAR

Date Analyzed: 09/12/06

Analytical

. 06 By: JMK

Analytical Batch: 6091247

Semivolatile Organic Compounds by EPA Method 8270C

0101	A 1. 1.	Analytical		
CAS Number	Analyte	Result	RL	MDL
83-32-9	Acenaphthene	0.0663	5.0	0.021
208-96-8	Acenaphthylene	5 . 0U	5.0	0.038
120-12-7	Anthracene	5.0U	5.0	0.030
56-55-3	Benzo(a)anthracene	1.0U	1.0	0.058
50-32-8	Benzo(a)pyrene	1.0U	1.0	0.031
205-99-2	Benzo(b)fluoranthene	1.0U	1.0	0.038
207-08-9	Benzo(k)fluoranthene	1.0U	1.0	0.048
191-24-2	Benzo(g,h,i)perylene	1.0U	1.0	0.030
218-01-9	Chrysene	1.0U	1.0	0.030
53-70-3	Dibenz(a,h)anthracene	2.0U	2.0	0.019
206-44-0	Fluoranthene	0.060J	1.0	0.033
86-73-7	Fluorene	5.0U	5.0	0.027
193-39-5	Indeno(1,2,3-cd)pyrene	2.0U	2.0	0.021
91-57-6	2-Methylnaphthalene	5. 0 U	5.0	0.022
91-20-3	Naphthalene	0.028J	5.0	0.022
85-01-8	Phenanthrene	0.0763	2.0	0.033
129-00-0	Pyrene	0.0453	5.0	0.044
Surrogates	% Recovery	Control Limits		
Nitrobenzene-d5	84	<i>26-116</i>		
2-Fluorobiphenyl	82	<i>37-123</i>		
o-Terphenyl	94	<i>30-119</i>		

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-TW-9 (6-11') (I)

Lab Sample ID: 0609110-10

Matrix:

Water

Work Order:

0609110

Description:

G06523

Sampled:

09/06/06 15:40

Sampled By:

BDP

Received: 09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	By	QC Batch
Arsenic	1.9		1.0	0.47	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Cadmium	0.53		0.20	0.062	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Chromium	1.0	U	1.0	0.66	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Copper	22		1.0	0.32	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Lead	21		1.0	0.24	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Mercury	0.69		0.20	0.037	ug/L	1	USEPA-7470A	09/13/06	КЈВ	0610461
Selenium	1.0	U	1.0	0.73	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386
Zinc	180		1.0	0.84	ug/L	1	USEPA-6020A	09/15/06	JMF	0610386

Client: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-1 (12.5-13') (I)

Lab Sample ID: 0609110-11

Matrix:

Project:

Soil

87

Unit:

ug/kg dry

Dilution Factor: 1

QC Batch: 0610452

Percent Solids:

Work Order:

0609110

Description:

G06523

BDP

Sampled:

09/05/06 10:20

Sampled By: Received:

09/07/06 08:40

09/12/06 By: CAR

Prepared: Date Analyzed:

09/13/06 By: JLW

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

		Analytical		
CAS Number	Analyte	Result	RL	MDL
12674-11-2	PCB-1016	380 U	380	5.0
11104-28-2	PCB-1221	380 U	380	14
11141-16-5	PCB-1232	380 U	380	5.2
53469-21-9	PCB-1242	380 U	380	7.2
12672-29-6	PCB-1248	380U	380	4.3
11097-69-1	PCB-1254	380 U	380	6.9
11096-82-5	PCB-1260	380U	380	5.1

Surrogates % Recovery **Control Limits** Decachlorobiphenyl 102 28-139 Tetrachloro-m-xylene 88 32-129

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-1 (12.5-13') (I)

Sampled:

09/05/06 10:20

Lab Sample ID: 0609110-11

Sampled By:

BDP

Matrix: Percent Solids: Soil 87

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Arsenic	8500		100	23	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Cadmium	73		50	7.3	ug/kg đr y wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Chromium	20000		100	42	ug/kg đry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Copper	13000		100	22	ug/kg đ ry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Lead	10000		100	41	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Mercury	20	J	50	4.8	ug/kg dry wt.	1	USEPA-7471A	09/12/06	KJB	0610420
Selenium	150		100	63	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Zinc	30000		1000	450	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-1 (12.5-13') (I)

Sampled:

Lab Sample ID: 0609110-11

Sampled By:

09/05/06 10:20 **BDP**

Matrix:

Soil

Received:

09/07/06 08:40

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Percent Solids	87	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-2 (9-10') (I)

Lab Sample ID: 0609110-12

Matrix:

Soil

Unit: ug/kg dry

Dilution Factor: 1

QC Batch: 0610452

Percent Solids: 59 Work Order:

0609110

Description: G06523

Sampled:

09/05/06 11:20

Sampled By:

BDP

Received:

09/07/06 08:40 09/12/06

Prepared: Date Analyzed:

By: CAR By: JLW 09/13/06

Analytical Batch: 6091419

Polychlorinated Biphenyis (PCBs) by EPA Method 8082

		Analytical		
CAS Number	Analyte	Result	RL	MDL
12674-11-2	PCB-1016	560 U	560	7.3
11104-28-2	PCB-1010	560 U	560	7.5 21
11141-16-5	PCB-1232	560 U	560	7.6
53469-21-9	PCB-1242	560 U	560	11
12672-29-6	PCB-1248	560 U	560	6.3
11097-69-1	PCB-1254	560 U	560	10
11096-82-5	PCB-1260	560 U	560	7.5
Commentes				

Surrogates	% Recovery	Control Limits
Decachlorobiphenyl	80	28-139
Tetrachloro-m-xylene	69	<i>32-129</i>

Client:

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-2 (9-10') (I)

Lab Sample ID:

Percent Solids:

0609110-12

Matrix:

Soil 59

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 11:20

Sampled By:

BDP

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	RL	MDL Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Arsenic	5800	100	23 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Cadmium	140	50	7.3 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Chromium	18000	100	42 ug/kg đry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Copper	38000	100	22 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Lead	15000	100	41 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Mercury	75	50	4.8 ug/kg dry wt.	1	USEPA-7471A	09/12/06 KJB	0610420
*Selenium	490	100	63 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
*Zinc	140000	5000	2300 ug/kg dry wt.	5	USEPA-6020A	09/18/06 DSC	0610391

Page 42 of 112

^{*}See Statement of Data Qualifications

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-2 (9-10') (I)

Sampled:

09/05/06 11:20

Sampled By:

Lab Sample ID: 0609110-12

BDP

Matrix:

Soil

Received:

09/07/06 08:40

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Percent Solids	59	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Fishbeck, Thompson, Carr & Huber Client:

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-2 (12-13') (I)

Lab Sample ID: 0609110-13

Matrix:

Soil

85

Unit: ug/kg dry

Dilution Factor: 1

QC Batch: 0610452

Percent Solids:

Work Order:

0609110

Description:

G06523

BDP

Sampled:

09/05/06 11:25

Sampled By:

09/07/06 08:40

Received: Prepared:

By: CAR

Date Analyzed:

09/12/06 09/13/06 By: JLW

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

Analytical CAS Number Analyte Result RL MDL 390 U 390 5.0 12674-11-2 PCB-1016 11104-28-2 PCB-1221 390 U 390 14 11141-16-5 PCB-1232 390 U 390 5.3 390 U 7.3 53469-21-9 PCB-1242 390 390 U 390 4.3 12672-29-6 PCB-1248 390 U 7.0 11097-69-1 PCB-1254 390 11096-82-5 PCB-1260 390 U 390 5.2 Surrogates **Control Limits**

% Recovery 28-139 Decachlorobiphenyl 91 Tetrachloro-m-xylene 90 32-129

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-2 (12-13') (I) Lab Sample ID: **0609110-13**

Soil

Matrix: Percent Solids: 85 Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 11:25

Sampled By:

BDP

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	R	L MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Arsenic	740	10	0 23	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Cadmium	19	J 5	0 7.3	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Chromium	4700	10	0 42	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Copper	3200	10	0 22	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Lead	2000	10	0 41	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Mercury	50	U 5	0 4.8	ug/kg dry wt.	1	USEPA-7471A	09/12/06	КЈВ	0610420
Selenium	100	10	0 63	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Zinc	15000	100	0 450	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-2 (12-13') (I)

Sampled:

09/05/06 11:25

Lab Sample ID: **0609110-13**

Sampled By:

BDP

Matrix:

Soil

Received:

09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Percent Solids	85	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Tetrachloro-m-xylene

Client Sample ID: **PP-06-09-SB-2 (12-13') (D)**

Lab Sample ID: 0609110-14

Matrix: Soil

Unit: ug/kg dry

Dilution Factor:

QC Batch: 0610452

Percent Solids: 87

Work Order: 0609110

Description: G06523

Sampled: 09/

09/05/06 11:25

Sampled By:

BDP

Received: 09/07/06 08:40

Prepared: Date Analyzed: 09/12/06 By: CAR 09/13/06 By: JLW

Analytical Batch: 6091419

32-129

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

			Analytical		
CAS Number	Analyte		Result	RL	MDL
12674-11-2	PCB-1016		380U	380	4.9
11104-28-2	PCB-1221		380U	380	14
11141-16-5	PCB-1232		380U	380	5.2
53469-21-9	PCB-1242		380U	380	7.1
12672-29-6	PCB-1248		380U	380	4.2
11097-69-1	PCB-1254		380 U	380	6.9
11096-82-5	PCB-1260		380 U	380	5.1
Surrogates		% Recovery	Control Limits		
Decachlorobiphenyl	•	100	<i>28-139</i>		

93

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Percent Solids:

Client Sample ID: PP-06-09-SB-2 (12-13') (D)

Sampled:

09/05/06 11:25

Lab Sample ID: **0609110-14**

Sampled By:

BDP

Matrix:

Soil 87

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	By	QC Batch
Arsenic	750		100	23	ug/kg ɗry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Cadmium	18	J	50	7.3	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Chromium	3800		100	42	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Copper	2800		100	22	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Lead	1900		100	41	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Mercury	50	U	50	4.8	ug/kg dry wt.	1	USEPA-7471A	09/12/06	KJB	0610420
Selenium	100		100	63	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Zinc	15000		1000	450	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-2 (12-13') (D)

Sampled:

Lab Sample ID: 0609110-14

Sampled By:

09/05/06 11:25 **BDP**

Matrix:

Soil

Received:

09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Percent Solids	87	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description: G06523

Client Sample ID: PP-06-09-SB-3 (2-2.5') (I)

09/05/06 11:55 **BDP**

Lab Sample ID: 0609110-15

Sampled: Sampled By:

Matrix:

Soil

Received:

09/07/06 08:40

Unit:

ug/kg dry

Prepared:

09/12/06 By: CAR

Dilution Factor: 1

By: JLW

QC Batch:

0610452

Date Analyzed:

09/13/06

Percent Solids:

89

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

			Analytical		
CAS Number	Analyte		Result	RL	MDL
12674-11-2	PCB-1016		370 U	370	4.8
11104-28-2	PCB-1221		370U	370	14
11141-16-5	PCB-1232		370 U	370	5.0
53469-21-9	PCB-1242		370 U	370	7.0
12672-29-6	PCB-1248		370 U	370	4.1
11097-69-1	PCB-1254		270 J	370	6.7
11096-82-5	PCB-1260		370 U	370	4.9
Surrogates		% Recovery	Control Limits		
Decachlorobiphenyl		83	<i>28-139</i>		
Tetrachloro-m-xylen	e	78	<i>32-129</i>		

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-3 (2-2.5') (I)

Sampled:

09/05/06 11:55

Lab Sample ID: 0609110-15

Sampled By:

BDP

Matrix:

Soil

Received:

09/07/06 08:40

Percent Solids: 89

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	RL	MDL Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Arsenic	6300	100	23 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Cadmium	140	50	7.3 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Chromium	19000	100	42 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Copper	23000	100	22 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Lead	59000	200	83 ug/kg dry wt.	. 2	USEPA-6020A	09/18/06 DSC	0610391
Mercury	220	50	4.8 ug/kg dry wt.	1	USEPA-7471A	09/12/06 KJB	0610420
Selenium	300	100	63 ug/kg dry wt.	. 1	USEPA-6020A	09/18/06 DSC	0610391
Zinc	84000	2000	910 ug/kg dry wt.	2	USEPA-6020A	09/18/06 DSC	0610391

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-3 (2-2.5') (I)

Lab Sample ID: **0609110-15** Matrix:

Soil

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 11:55

Sampled By:

BDP

Received:

09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Percent Solids	89	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-3 (4-5') (I)

Lab Sample ID: 0609110-16

Matrix:

Soil

70

Unit:

ug/kg dry

Dilution Factor:

1

QC Batch:

0610452

Percent Solids:

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 12:00

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/12/06 By: CAR By: JLW

Date Analyzed:

09/13/06

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

			Analytical		
CAS Number	Analyte		Result	RL	MDL
12674-11-2	PCB-1016		470U	470	6.2
11104-28-2	PCB-1221		470 U	470	17
11141-16-5	PCB-1232		470 U	470	6.5
53469-21-9	PCB-1242		470 U	470	8.9
12672-29-6	PCB-1248		470 U	470	5.3
11097-69-1	PCB-1254		1903	470	8.6
11096-82-5	PCB-1260		470 U	470	6.3
Curromatos		04	Control Limite		

Surrogates % Recovery Control Limits Decachlorobiphenyl 71 28-139 63 Tetrachloro-m-xylene 32-129

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-3 (4-5') (I)

Sampled:

09/05/06 12:00

Lab Sample ID: 0609110-16

Sampled By: Received:

BDP

Matrix:

Soil

09/07/06 08:40

Percent Solids: 70

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	RL	MDL Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Arsenic	2600	100	23 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Cadmium	160	50	7.3 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Chromium	15000	100	42 ug/kg dry wt.	· 1	USEPA-6020A	09/18/06 DSC	0610391
Copper	36000	100	22 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Lead	15000	100	41 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Mercury	160	50	4.8 ug/kg dry wt.	1	USEPA-7471A	09/12/06 KJB	0610420
Selenium	330	100	63 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Zinc	120000	5000	2300 ug/kg dry wt.	5	USEPA-6020A	09/18/06 DSC	0610391

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-3 (4-5') (I)

Lab Sample ID: 0609110-16 Matrix:

Soil

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 12:00

Sampled By:

BDP

Received:

09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Percent Solids	70	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-4 (9-10') (I)

Lab Sample ID: 0609110-17

Matrix:

Soil

Unit: ug/kg dry

Dilution Factor: 1

QC Batch: 0610452

Percent Solids: 53

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 12:30

Sampled By:

BDP

Received: 09/07/06 08:40

09/12/06

Prepared: Date Analyzed:

09/13/06 By: JLW

By: CAR

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

			Analytical		
CAS Number	Analyte		Result	RL	MDL
12674-11-2	PCB-1016		620 U	620	8.1
11104-28-2	PCB-1010		620U	620	23
11141-16-5	PCB-1232		620 U	620	
53469-21-9	PCB-1232 PCB-1242		620U		8.5
				620	12
12672-29-6	PCB-1248		620 U	620	7.0
11097-69-1	PCB-1254		620U	620	11
11096-82-5	PCB-1260		620 U	620	8.3
Surrogates		0/2 Pacayons	Control Limite		

Surrogates% RecoveryControl LimitsDecachlorobiphenyl5928-139Tetrachloro-m-xylene5732-129

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-4 (9-10') (I)

Sampled:

09/05/06 12:30

Lab Sample ID: 0609110-17

Sampled By:

BDP

Matrix:

Soil

Received:

09/07/06 08:40

Percent Solids:

53

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Arsenic	4000	100	23	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Cadmium	170	50	7.3	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Chromium	12000	100	42	ug/kg đry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Copper	32000	100	22	ug/kg đry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Lead	8700	100	41	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Mercury	44	J 50	4.8	ug/kg đry wt.	1	USEPA-7471A	09/12/06	KJB	0610420
Selenium	1100	100	63	ug/kg dry wt.	1	USEPA-6020A	09/18/06	DSC	0610391
Zinc	66000	2000	910	ug/kg đry wt.	2	USEPA-6020A	09/18/06	DSC	0610391

Client:

Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Work Order: Description:

0609110 G06523

Project: Client Sample ID: PP-06-09-SB-4 (9-10') (I)

Sampled:

09/05/06 12:30

Lab Sample ID: 0609110-17

Sampled By:

BDP

Matrix:

Soil

Received:

09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Percent Solids	53	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-5 (2.5-3.5') (I)

Lab Sample ID: 0609110-18

Matrix: Soil

Unit: ug/kg dry

Dilution Factor: 1

QC Batch: 0610499

Percent Solids: 83 Work Order: 0609110

Description: G06523

Sampled: 09/05/06 13:50

Sampled By: **BDP**

Received: 09/07/06 08:40

Prepared: 09/13/06 By: CAR Date Analyzed: 09/18/06 By: JMK

Analytical Batch: 6091962

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical	D.	MDI	
CAS Number	Analyte	Result	RL	MDL	
83-32-9	Acenaphthene	400 U	400	1.6	
208-96-8	Acenaphthylene	4.9]	400	1.6	
120-12-7	Anthracene	15 J	400	2.0	
56-55-3	Benzo(a)anthracene	373	400	3.7	
50-32-8	Benzo(a)pyrene	213	400	3.7	
205-99-2	Benzo(b)fluoranthene	32 J	400	3.6	
191-24-2	Benzo(g,h,i)perylene	20 J	400	10	
207-08-9	Benzo(k)fluoranthene	10 J	400	2.6	
59-50-7	4-Chloro-3-methylphenol	340 U	340	2.2	
95-57-8	2-Chlorophenol	400 U	400	1.7	
218-01-9	Chrysene	31 J	400	3.4	
53-70-3	Dibenz(a,h)anthracene	5.73	400	2.9	
120-83-2	2,4-Dichlorophenol	400 U	400	1.3	
105-67-9	2,4-Dimethylphenol	400 U	400	18	
534-52-1	4,6-Dinitro-2-methylphenol	1000 U	1000	1.2	
51-28-5	2,4-Dinitrophenol	1000 U	1000	4.3	
206-44-0	Fluoranthene	753	400	2.2	
86-73-7	Fluorene	5.43	400	1.8	
193-39-5	Indeno(1,2,3-cd)pyrene	153	400	8.7	
91-57-6	2-Methylnaphthalene	1103	400	1.8	
95-48-7	2-Methylphenol	1.3 J	400	1.2	
108-39-4	3 & 4 Methylphenol	400 U	400	7.7	
91-20-3	Naphthalene	62 J	400	2.1	
100-02-7	4-Nitrophenol	1000 U	1000	33	
88-75-5	2-Nitrophenol	400 U	400	1.7	
87-86-5	Pentachlorophenol	24 U	24	2.6	
85-01-8	Phenanthrene	98J	400	2.1	
108-95-2	Phenol	400 U	400	2.1	
129-00-0	Pyrene	6 4 J	400	2.5	
95-95-4	2,4,5-Trichlorophenol	400 U	400	11	
88-06-2	2,4,6-Trichlorophenol	400 U	400	1.2	
_					

Continued on next page

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-5 (2.5-3.5') (I)

Lab Sample ID: **0609110-18**

Matrix:

Unit:

ug/kg dry

Dilution Factor: QC Batch:

Percent Solids:

Soil

83

1

0610499

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 13:50

Sampled By: Received:

BDP

09/07/06 08:40

Prepared:

09/13/06 By: CAR

Date Analyzed:

09/18/06 By: JMK

Analytical Batch: 6091962

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

		Analytical		
Analyte	***************************************	Result	RL	MDL
	% Recovery	Control Limits		
	77	29-115		
	75	<i>38-107</i>		
	83	40-132		
	85	<i>50-118</i>		
	105	22-113		
	94	41-125		
	Analyte	% Recovery 77 75 83 85 105	Analyte Result % Recovery Control Limits 77 29-115 75 38-107 83 40-132 85 50-118 105 22-113	Analyte Result RL % Recovery Control Limits 77 29-115 75 38-107 83 40-132 85 50-118 105 22-113

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-5 (2.5-3.5') (I)

Sampled:

09/05/06 13:50

Lab Sample ID: 0609110-18

Sampled By:

BDP

Matrix:

Soil

Received:

Percent Solids:

83

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	RL	MDL Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Arsenic	12000	100	23 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Cadmium	420	50	7.3 ug/kg dry wt.	. 1	USEPA-6020A	09/18/06 DSC	0610391
Chromium	14000	100	42 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Copper	240000	500	110 ug/kg dry wt.	5	USEPA-6020A	09/18/06 DSC	0610391
Lead	160000	500	210 ug/kg dry wt.	5	USEPA-6020A	09/18/06 DSC	0610391
Mercury	270	50	4.8 ug/kg dry wt.	1	USEPA-7471A	09/12/06 KJB	0610420
Selenium	1400	100	63 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Zinc	210000	5000	2300 ug/kg đry wt.	5	USEPA-6020A	09/18/06 DSC	0610391

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Matrix:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-5 (2.5-3.5') (I)

Lab Sample ID: 0609110-18

Soil

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 13:50

Sampled By:

BDP

Received:

09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Percent Solids	83	0.10	0.10	%	1	USEPA-3550B	09/11/06	SSM	0610473

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-6 (0-1') (I)

Lab Sample ID:

0609110-19

Matrix: Unit:

ug/kg dry

Dilution Factor:

QC Batch:

Percent Solids:

92

0610452

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 14:40

Sampled By:

BDP

Received: Prepared:

09/07/06 08:40 09/12/06

Date Analyzed:

By: CAR 09/13/06

By: JLW

Analytical Batch: 6091419

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

		Analytical						
CAS Number	Analyte	Result	RL	MDL				
12674-11-2	PCB-1016	360 U	360	4.7				
11104-28-2	PCB-1221	360 U	360	13				
11141-16-5	PCB-1232	360 U	360	4.9				
53469-21-9	PCB-1242	360 U	360	6.8				
12672-29-6	PCB-1248	360 U	360	4.0				
11097-69-1	PCB-1254	360U	360	6.6				
11096-82-5	PCB-1260	360 U	360	4.8				
C								

Surrogates % Recovery **Control Limits** Decachlorobiphenyl 77 28-139 71 32-129 Tetrachloro-m-xylene

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

Sampled:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-6 (0-1') (I)

Lab Sample ID: 0609110-19

09/05/06 14:40 **BDP**

Matrix:

Soil

Sampled By: Received:

09/07/06 08:40

Unit:

ug/kg dry

Prepared:

09/11/06 By: JDM

Dilution Factor: 1 Date Analyzed:

By: JDM 09/11/06

QC Batch:

0610571

Analytical Batch: 6091423

Percent Solids: 92

Volatile Organics by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL	MDL
	74.41,10	Result	- KL	1.1DF
67-64-1	Acetone	4103	1100	62
107-13-1	Acrylonitrile	110U	110	25
71-43-2	Benzene	56	55	3.5
108-86-1	Bromobenzene	11 0 U	110	3.4
74-97-5	Bromochloromethane	110U	110	7.3
75-27-4	Bromodichloromethane	110U	110	6.1
75-25-2	Bromoform	110U	110	8.3
74-83-9	Bromomethane	220 U	220	14
104-51-8	n-Butylbenzene	92	55	18
135-98-8	sec-Butylbenzene	26 J	55	16
98-06-6	tert-Butylbenzene	55 U	55	6.4
75-15-0	Carbon Disulfide	270 U	270	11
56-23-5	Carbon Tetrachloride	55 U	55	4.4
108-90-7	Chlorobenzene	55 U	55	6.2
75-00-3	Chloroethane	270 U	270	8.7
67-66-3	Chloroform	113	55	9.1
74-87-3	Chloromethane	2 70 U	270	9.9
96-12-8	1,2-Dibromo-3-chloropropane	55 U	55	32
124-48-1	Dibromochloromethane	1 10 U	110	7.0
106-93-4	1,2-Dibromoethane	55 U	55	5.9
74-95-3	Dibromomethane	270 U	270	9.9
110-57-6	trans-1,4-Dichloro-2-butene	55 U	55	25
95-50-1	1,2-Dichlorobenzene	110U	110	16
541-73-1	1,3-Dichlorobenzene	110U	110	8.1
106-46-7	1,4-Dichlorobenzene	110U	110	14
75-71-8	Dichlorodifluoromethane	2 70 U	270	10
75-34-3	1,1-Dichloroethane	55 U	55	8.7
107-06-2	1,2-Dichloroethane	55 U	55	4.7
75-35-4	1,1-Dichloroethene	55 U	55	7.2

Continued on next page

Page 64 of 112

Work Order:

Description:

Sampled By:

Date Analyzed:

Analytical Batch: 6091423

Analytical

Sampled:

Received:

Prepared:

0609110

09/05/06 14:40

09/07/06 08:40

By: JDM By: JDM

G06523

09/11/06

09/11/06

110U

110

7.1

BDP

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-6 (0-1') (I)

Lab Sample ID: 0609110-19

Soil

Matrix: Unit:

ug/kg dry

Dilution Factor:

QC Batch:

0610571

Percent Solids:

1

92

Volatile Organics by EPA Method 8260B (Continued)

		retury cicus			
CAS Number	Analyte	Result	RL	MDL	
156-59-2	cis-1,2-Dichloroethene	55 U	55	8.5	
156-60-5	trans-1,2-Dichloroethene	55 U	55	8.2	
78-87-5	1,2-Dichloropropane	55 U	55	9.5	
10061-01-5	cis-1,3-Dichloropropene	55 U	55	3.9	
10061-02-6	trans-1,3-Dichloropropene	55 U	55	4.7	
100-41-4	Ethylbenzene	190	55	6.0	
60-29-7	Ethyl Ether	220U	220	10	
591-78-6	2-Hexanone	2700 U	2700	22	
74-88-4	Iodomethane	110U	110	17	
98-82-8	Isopropylbenzene	69J	270	4.3	
99-87-6	4-Isopropyltoluene	573	110	7.9	
1634-04-4	Methyl tert-Butyl Ether	270 U	270	4.0	
75-09-2	Methylene Chloride	110 U	110	11	
78-93-3	2-Butanone (MEK)	3003	820	31	
91-57-6	2-Methylnaphthalene	1200	360	14	
108-10-1	4-Methyl-2-pentanone (MIBK)	2700 U	2700	10	
91-20-3	Naphthalene	1000	360	15	
103-65-1	n-Propylbenzene	81J	110	7.6	
100-42-5	Styrene	55 U	55	2.4	
630-20-6	1,1,1,2-Tetrachloroethane	110U	110	7.9	
79-34-5	1,1,2,2-Tetrachloroethane	55 U	55	6.5	
127-18-4	Tetrachloroethene	20 Ј	55	7.3	
109-99-9	Tetrahydrofuran	500J	1100	47	
108-88-3	Toluene	650	110	14	
87-61-6	1,2,3-Trichlorobenzene	360 U	360	17	
120-82-1	1,2,4-Trichlorobenzene	360 U	360	20	
71-55-6	1,1,1-Trichloroethane	55 U	55	8.3	
79-00-5	1,1,2-Trichloroethane	55U	55	6.2	
79-01-6	Trichloroethene	55U	55	7.8	
75-69-4	Trichlorofluoromethane	110U	110	9.0	

Continued on next page

96-18-4

Page 65 of 112

1,2,3-Trichloropropane

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: **PP-06-09-SB-6 (0-1') (I)**

Lab Sample ID:

0609110-19

Matrix:

Unit:

ug/kg dry

Dilution Factor: QC Batch:

Percent Solids:

0610571

92

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 14:40

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

By: JDM 09/11/06 By: JDM

Date Analyzed: 09/11/06

Analytical Batch: 6091423

Volatile Organics by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
95-63-6	1,2,4-Trimethylbenzene	540	110	5.0
108-67-8	1,3,5-Trimethylbenzene	160	110	3.8
75-01-4	Vinyl Chloride	44U	44	8.4
136777-61-2	Xylene, Meta + Para	970	110	8.5
95-47-6	Xylene, Ortho	670	55	5.3
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	100	78-121		
1,2-Dichloroethane-d4	99	84-114		
Toluene-d8	98	<i>85-114</i>		
4-Bromofluorobenzene	101	69-119		

Client: Fishbeck, Thompson, Carr & Huber

Project: Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-6 (0-1') (I)

Lab Sample ID: 0609110-19

Matrix: Soil

Unit: ug/kg dry

Dilution Factor: 1

QC Batch: 0610499

Percent Solids: 92

Work Order: **0609110**

Description: G06523

Sampled: 09/05/06 14:40

Sampled By: BDP

Received: 09/07/06 08:40

Prepared: 09/13/06 By: CAR Date Analyzed: 09/18/06 By: JMK

Analytical Batch: 6091962

Semivolatile Organic Compounds by EPA Method 8270C

		Analytical		
CAS Number	Analyte	Result	RL	MDL
83-32-9	Acenaphthene	12 J	360	1.5
208-96-8	Acenaphthylene	140J	360	1.5
120-12-7	Anthracene	943	360	1.8
56-55-3	Benzo(a)anthracene	510	360	3.3
205-99-2	Benzo(b)fluoranthene	630	360	3.3
207-08-9	Benzo(k)fluoranthene	180J	360	2.4
50-32-8	Benzo(a)pyrene	3001	360	3.3
191-24-2	Benzo(g,h,i)perylene	290 J	360	23
218-01-9	Chrysene	310J	360	3.0
53-70-3	Dibenz(a,h)anthracene	753	360	23
206-44-0	Fluoranthene	920	360	2.0
86-73-7	Fluorene	21J	360	1.7
193-39-5	Indeno(1,2,3-cd)pyrene	2701	360	21
91-57-6	2-Methylnaphthalene	350J	360	1.6
91-20-3	Naphthalene	2003	360	1.9
85-01-8	Phenanthrene	3601	360	1.9
129-00-0	Pyrene	830	360	2.2
Surrogates	% Recovery	Control Limits		
Nitrobenzene-d5	85	40-132		
2-Fluorobiphenyl	85	50-118		
o-Terphenyl	91	<i>41-125</i>		

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: **PP-06-09-SB-6 (0-1') (I)**

Sampled:

09/05/06 14:40

Lab Sample ID:

0609110-19 Soil

Sampled By:

BDP

Matrix: 92 Percent Solids:

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	RL	MDL Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Arsenic	22000	100	23 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Cadmium	180	50	7.3 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Chromium	9300	100	42 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Copper	20000	100	22 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Lead	54000	200	83 ug/kg dry wt.	2	USEPA-6020A	09/18/06 DSC	0610391
Mercury	120	50	4.8 ug/kg dry wt.	1	USEPA-7471A	09/12/06 KJB	0610420
Selenium	410	100	63 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Zinc	57000	2000	910 ug/kg dry wt.	2	USEPA-6020A	09/18/06 DSC	0610391

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Matrix:

Plainwell Paper Phase II

Client Sample ID: **PP-06-09-SB-6 (0-1') (I)**

Lab Sample ID:

0609110-19 Soil

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 14:40

Sampled By:

BDP

Received: 09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC / Batch
Percent Solids	92	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

BDP

Client Sample ID: PP-06-09-SB-6 (0-1') (D)

Sampled:

09/05/06 14:40

Lab Sample ID: 0609110-20

Soil

Sampled By:

Matrix:

Received:

09/07/06 08:40

Unit:

ug/kg dry

09/11/06 By: JDM

Dilution Factor:

1

Prepared: Date Analyzed:

By: JDM 09/11/06

QC Batch:

0610571

Percent Solids:

91

Analytical Batch: 6091423

Volatile Organics by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL	MDL
67.64.1	Acchono	2407	1100	<i>c</i> 2
67-64-1 107-13-1	Acetone	310J 110U	1100 110	63
	Acrylonitrile			25
71-43-2	Benzene	36J	55	3.6
108-86-1	Bromobenzene	110U	110	3.4
74-97-5	Bromochloromethane	110U	110	7.4
75-27-4	Bromodichloromethane	110U	110	6.1
75-25-2	Bromoform	110U	110	8.3
74-83-9	Bromomethane	220U	220	14
104-51-8	n-Butylbenzene	381	55	19
135-98-8	sec-Butylbenzene	55 U	55	16
98-06-6	tert-Butylbenzene	55U	55	6.5
75-15-0	Carbon Disulfide	270U	270	12
56-23-5	Carbon Tetrachloride	55U	55	4.4
108-90-7	Chlorobenzene	55U	55	6.3
75-00-3	Chloroethane	270U	270	8.8
67-66-3	Chloroform	55 U	55	9.2
74-87-3	Chloromethane	2 70 U	270	10
96-12-8	1,2-Dibromo-3-chloropropane	55 U	55	32
124-48-1	Dibromochloromethane	110U	110	7.0
106-93-4	1,2-Dibromoethane	55 U	55	6.0
74-95-3	Dibromomethane	270 U	270	9.9
110-57-6	trans-1,4-Dichloro-2-butene	55 U	55	26
95-50-1	1,2-Dichlorobenzene	110U	110	16
541-73-1	1,3-Dichlorobenzene	110 U	110	8.2
106-46-7	1,4-Dichlorobenzene	110U	110	14
75-71-8	Dichlorodifluoromethane	270U	270	10
75-34-3	1,1-Dichloroethane	55U	55	8.8
107-06-2	1,2-Dichloroethane	55U	55	4.8
75-35-4	1,1-Dichloroethene	55U	55	7.3
156-59-2	cis-1,2-Dichloroethene	55 U	55	8.6
156-60-5	trans-1,2-Dichloroethene	55 U	55	8.2
250-00-5	trans 1/2 promorocarene	550	33	0.2

Continued on next page

Page 70 of 112

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-6 (0-1') (D)

Lab Sample ID: Matrix:

0609110-20 Soil

91

Unit:

ug/kg dry

Dilution Factor:

QC Batch: 0610571

Percent Solids:

Work Order:

0609110

Description:

G06523

Sampled:

Received:

09/05/06 14:40

Sampled By:

BDP

A -- 1-41--1

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM

09/11/06 By: JDM

Analytical Batch: 6091423

Volatile Organics by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
78-87-5	1,2-Dichloropropane	55 U	55	9.5
10061-01-5	cis-1,3-Dichloropropene	55 U	55	4.0
10061-02-6	trans-1,3-Dichloropropene	55 U	55	4.8
100-41-4	Ethylbenzene	74	55	6.0
60-29-7	Ethyl Ether	220 U	220	10
591-78-6	2-Hexanone	2700U	2700	22
74-88-4	Iodomethane	110U	110	17
98-82-8	Isopropylbenzene	30J	270	4.3
99-87-6	4-Isopropyltoluene	22 J	110	7.9
1634-04-4	Methyl tert-Butyl Ether	270U	270	4.0
75-09-2	Methylene Chloride	110U	110	11
78-93-3	2-Butanone (MEK)	260 J	820	31
91-57-6	2-Methylnaphthalene	1200	360	14
108-10-1	4-Methyl-2-pentanone (MIBK)	2700U	2700	10
91-20-3	Naphthalene	490	360	15
103-65-1	n-Propylbenzene	31 J	110	7.6
100-42-5	Styrene	55 U	55	2.4
630-20-6	1,1,1,2-Tetrachloroethane	110U	110	7.9
79-34-5	1,1,2,2-Tetrachloroethane	55U	55	6.5
127-18-4	Tetrachloroethene	55U	55	7.4
109-99-9	Tetrahydrofuran	2503	1100	47
108-88-3	Toluene	360	110	14
87-61-6	1,2,3-Trichlorobenzene	360U	360	18
120-82-1	1,2,4-Trichlorobenzene	360 U	360	20
71-55-6	1,1,1-Trichloroethane	55 U	55	8.3
79-00-5	1,1,2-Trichloroethane	55 U	55	6.2
79-01-6	Trichloroethene	55 U	55	7.8
75-69-4	Trichlorofluoromethane	1 10 U	110	9.0
96-18-4	1,2,3-Trichloropropane	110U	110	7.2
95-63-6	1,2,4-Trimethylbenzene	240	110	5.1

Continued on next page

Page 71 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-6 (0-1') (D)

Lab Sample ID: 0609110-20

Matrix:

Soil

Unit:

ug/kg dry

Dilution Factor: QC Batch:

Percent Solids:

0610571

91

1

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 14:40

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM

09/11/06

By: JDM

Analytical Batch: 6091423

Volatile Organics by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
108-67-8	1,3,5-Trimethylbenzene	753	110	3.8
75-01-4	Vinyl Chloride	44U	44	8.5
136777-61-2	Xylene, Meta + Para	440	110	8.6
95-47-6	Xylene, Ortho	300	55	5.3
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	101	<i>78-121</i>		
1,2-Dichloroethane-d4	99	84-114		
Toluene-d8	98	<i>85-114</i>		
4-Bromofluorobenzene	101	69-119		

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-6 (0-1') (D)

Lab Sample ID: 0609110-20

Matrix:

Soil

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 14:40

Sampled By:

BDP

Received:

09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Percent Solids	91	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description: G06523

Client Sample ID: PP-06-09-FB

09/05/06 14:55

Lab Sample ID: 0609110-21

Sampled By:

BDP

Matrix:

Soil

n/a

Received:

Sampled:

09/07/06 08:40

Unit:

ug/kg wet 1

Prepared:

09/11/06 By: JDM

Dilution Factor:

Date Analyzed:

09/11/06 By: JDM

QC Batch:

0610571

Analytical Batch: 6091423

Analytical

50 U

50 U

50

50

7.8

7.5

Percent Solids:

Volatile Organics by EPA Method 8260B

CAS Number	Analyte	Result	RL	MDL
67-64-1	Acetone	1000 U	1000	57
107-13-1	Acrylonitrile	100 U	100	22
71-43-2	Benzene	50 U	50	3.2
108-86-1	Bromobenzene	100 U	100	3.1
74-97-5	Bromochloromethane	100 U	100	6.7
75-27-4	Bromodichloromethane	100 U	100	5.6
75-25-2	Bromoform	100 U	100	7.6
74-83-9	Bromomethane	200 U	200	13
104-51-8	n-Butylbenzene	50 U	50	17
135-98-8	sec-Butylbenzene	50 U	50	14
98-06-6	tert-Butylbenzene	50 U	50	5.9
75-15-0	Carbon Disulfide	250 U	250	10
56-23-5	Carbon Tetrachloride	50 U	50	4.0
108-90-7	Chlorobenzene	50 U	50	5.7
75-00-3	Chloroethane	250 U	250	8.0
67-66-3	Chloroform	50 U	50	8.4
74-87-3	Chloromethane	250 U	250	9.1
96-12-8	1,2-Dibromo-3-chloropropane	50U	50	30
124-48-1	Dibromochloromethane	100U	100	6.4
106-93-4	1,2-Dibromoethane	50 U	50	5.4
74-95-3	Dibromomethane	250U	250	9.0
110-57-6	trans-1,4-Dichloro-2-butene	50U	50	23
95-50-1	1,2-Dichlorobenzene	100U	100	15
541-73-1	1,3-Dichlorobenzene	100U	100	7.4
106-46-7	1,4-Dichlorobenzene	100U	100	13
75-71-8	Dichlorodifluoromethane	250 U	250	9.4
75-34-3	1,1-Dichloroethane	50 U	50	8.0
107-06-2	1,2-Dichloroethane	50 U	50	4.3
75-35-4	1,1-Dichloroethene	50U	50	6.6

Continued on next page

156-59-2

156-60-5

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Page 74 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-FB

Sampled:

09/05/06 14:55

Lab Sample ID: 0609110-21

Sampled By:

Prepared:

BDP

Matrix:

Soil

n/a

Received:

09/07/06 08:40

Unit:

ug/kg wet

09/11/06 By: JDM

Dilution Factor:

1

09/11/06

By: JDM

QC Batch:

0610571

Date Analyzed:

Analytical Batch: 6091423

Percent Solids:

Volatile Organics by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
78-87-5	1,2-Dichloropropane	50U	50	8.7
10061-01-5	cis-1,3-Dichloropropene	50 U	50	3.6
10061-02-6	trans-1,3-Dichloropropene	50 U	50	4.3
100-41-4	Ethylbenzene	50U	50	5.5
60-29-7	Ethyl Ether	200U	200	9.4
591-78-6	2-Hexanone	2500U	2500	20
74-88-4	Iodomethane	100U	100	16
98-82-8	Isopropylbenzene	250U	250	3.9
99-87-6	4-Isopropyltoluene	100U	100	7.2
1634-04-4	Methyl tert-Butyl Ether	250U	250	3.7
75-09-2	Methylene Chloride	100U	100	10
78-93-3	2-Butanone (MEK)	1503	750	28
91-57-6	2-Methylnaphthalene	330U	330	12
108-10-1	4-Methyl-2-pentanone (MIBK)	2500 U	2500	9.5
91-20-3	Naphthalene	330U	330	14
103-65-1	n-Propylbenzene	100U	100	6.9
100-42-5	Styrene	50 U	50	2.2
630-20-6	1,1,1,2-Tetrachloroethane	100U	100	7.2
79-34-5	1,1,2,2-Tetrachloroethane	50U	50	5.9
127-18-4	Tetrachloroethene	50 U	50	6.7
109-99-9	Tetrahydrofuran	1000U	1000	43
108-88-3	Toluene	100U	100	13
87-61-6	1,2,3-Trichlorobenzene	330U	330	16
120-82-1	1,2,4-Trichlorobenzene	330U	330	18
71-55-6	1,1,1-Trichloroethane	50U	50	7.6
79-00-5	1,1,2-Trichloroethane	50U	50	5.7
79-01-6	Trichloroethene	50U	50	7.1
75-69-4	Trichlorofluoromethane	100U	100	8.2
96-18-4	1,2,3-Trichloropropane	100U	100	6.5
95-63-6	1,2,4-Trimethylbenzene	100U	100	4.6

Continued on next page

Page 75 of 112

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-FB

Lab Sample ID: 0609110-21

Matrix:

Soil

Unit:

ug/kg wet

Dilution Factor:

1

QC Batch: Percent Solids: 0610571

n/a

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 14:55

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/11/06 By: JDM

09/11/06 By: JDM

Analytical Batch: 6091423

Volatile Organics by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
108-67-8	1,3,5-Trimethylbenzene	100U	100	3.4
75-01 - 4	Vinyl Chloride	40 U	40	7.7
136777-61-2	Xylene, Meta + Para	1 00 U	100	7.8
95-47-6	Xylene, Ortho	50 U	50	4.8
Surrogates	% Recover	y Control Limits		
Dibromofluoromethane	100	<i>78-121</i>		
1,2-Dichloroethane-d4	99	84-114		
Toluene-d8	98	<i>85-114</i>		
4-Bromofluorobenzene	99	69-119		

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-7 (0-0.5') (I)

Lab Sample ID: **0609110-22**

Matrix:

Soil

90

Unit:

ug/kg dry

Dilution Factor: QC Batch:

2

Percent Solids:

0610499

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 15:35

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/13/06 By: CAR

Date Analyzed:

09/18/06 By: JMK

Analytical Batch: 6091962

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	33J	730	3.0
208-96-8	Acenaphthylene	160J	730	3.0
120-12-7	Anthracene	2003	730	3.6
56-55-3	Benzo(a)anthracene	560 J	730	6.7
50-32-8	Benzo(a)pyrene	3 50 J	730	6.8
205-99-2	Benzo(b)fluoranthene	840	730	6.7
191-24-2	Benzo(g,h,i)perylene	2 30 J	730	19
207-08-9	Benzo(k)fluoranthene	2303	730	4.8
59-50-7	4-Chloro-3-methylphenol	620 U	620	4.0
95-57-8	2-Chlorophenol	730U	730	3.1
218-01-9	Chrysene	4203	730	6.2
53-70-3	Dibenz(a,h)anthracene	71 J	730	5.3
120-83-2	2,4-Dichlorophenol	730U	730	2.3
105-67-9	2,4-Dimethylphenol	730U	730	33
534-52-1	4,6-Dinitro-2-methylphenol	1800 U	1800	2.2
51-28-5	2,4-Dinitrophenol	1800 U	1800	7.9
206-44-0	Fluoranthene	1400	730	4.1
86-73-7	Fluorene	43 J	730	3.4
193-39-5	Indeno(1,2,3-cd)pyrene	160J	730	16
91-57-6	2-Methylnaphthalene	900	730	3.4
95-48-7	2-Methylphenol	730U	730	2.2
108-39-4	3 & 4 Methylphenol	730U	730	14
91-20-3	Naphthalene	490 J	730	3.9
100-02-7	4-Nitrophenol	1800 U	1800	61
88-75-5	2-Nitrophenol	730U	730	3.2
87-86-5	Pentachlorophenol	45U	45	4.9
85-01-8	Phenanthrene	750	730	3.9
108-95-2	Phenol	730U	730	3.9
129-00-0	Pyrene	1200	730	4.5
95-95-4	2,4,5-Trichlorophenol	730U	730	20
88-06-2	2,4,6-Trichlorophenol	730U	730	2.2

Continued on next page

Page 77 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-7 (0-0.5') (I)

Lab Sample ID: **0609110-22**

Matrix:

90

Unit:

ug/kg dry

Dilution Factor: QC Batch:

Percent Solids:

Soil

2

0610499

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 15:35

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/13/06 By: CAR

Date Analyzed:

09/18/06

By: JMK

Analytical Batch: 6091962

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

Result Control Limits	RL	MDL
<i>29-115</i>		
<i>38-107</i>		
40-132		
50-118		
22-113		
41-125		
	40-132 50-118 22-113	38-107 40-132 50-118 22-113

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Client Sample ID: PP-06-09-SB-7 (0-0.5') (I)

Sampled:

09/05/06 15:35

Percent Solids:

Lab Sample ID: **0609110-22**

Sampled By:

BDP

Matrix:

Soil 90

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	RL	MDL Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Arsenic	5800	100	23 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Cadmium	270	50	7.3 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Chromium	7600	100	42 ug/kg đry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Copper	22000	100	22 ug/kg đry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Lead	41000	100	41 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Mercury	280	50	4.8 ug/kg dry wt.	1	USEPA-7471A	09/12/06 KJB	0610420
Selenium	500	100	63 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Zinc	64000	2000	910 ug/kg dry wt.	2	USEPA-6020A	09/18/06 DSC	0610391

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-7 (0-0.5') (I)

Lab Sample ID:

0609110-22

Matrix:

Soil

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 15:35

Sampled By:

BDP

Received:

09/07/06 08:40

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Percent Solids	90	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-7 (0-0.5') (D)

Lab Sample ID: 0609110-23

Matrix:

Project:

Soil

89

Unit:

ug/kg dry

Dilution Factor: 2

QC Batch:

0610499

Percent Solids:

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 15:35

Sampled By:

BDP

Received:

09/07/06 08:40

Prepared:

09/13/06 By: CAR

Date Analyzed:

09/18/06 By: JMK

Analytical Batch: 6091962

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	31J	740	3.0
208-96-8	Acenaphthylene	1703	740	3.0
120-12-7	Anthracene	200J	740	3.7
56-55-3	Benzo(a)anthracene	440J	740	6.8
50-32-8	Benzo(a)pyrene	340J	740	6.9
205-99-2	Benzo(b)fluoranthene	780	740	6.8
191-24-2	Benzo(g,h,i)perylene	220 J	740	19
207-08-9	Benzo(k)fluoranthene	230 J	740	4.9
59-50-7	4-Chloro-3-methylphenol	630U	630	4.0
95-57-8	2-Chlorophenol	740U	740	3.1
218-01-9	Chrysene	4603	740	6.3
53-70-3	Dibenz(a,h)anthracene	763	740	5.4
120-83-2	2,4-Dichlorophenol	740 U	740	2.4
105-67-9	2,4-Dimethylphenol	740 U	740	34
534-52-1	4,6-Dinitro-2-methylphenol	19 0 0U	1900	2.2
51-28-5	2,4-Dinitrophenol	1900U	1900	8.0
206-44-0	Fluoranthene	1400	740	4.2
86-73-7	Fluorene	41J	740	3.5
193-39-5	Indeno(1,2,3-cd)pyrene	1703	740	16
91-57-6	2-Methylnaphthalene	720 J	740	3.4
95-48-7	2-Methylphenol	740U	740	2.3
108-39-4	3 & 4 Methylphenol	7 4 0U	740	14
91-20-3	Naphthalene	360J	740	3.9
100-02-7	4-Nitrophenol	1900U	1900	62
88-75-5	2-Nitrophenol	74 0U	740	3.2
87-86-5	Pentachlorophenol	45 U	45	4.9
85-01-8	Phenanthrene	7003	740	4.0
108-95-2	Phenol	7 4 0U	740	3.9
129-00-0	Pyrene	1500	740	4.6
95-95-4	2,4,5-Trichlorophenol	7 4 0 U	740	21
88-06-2	2,4,6-Trichlorophenol	7 4 0 U	740	2.3
on novt nago	·			

Continued on next page

Page 81 of 112

Client: Fishbeck, Thompson, Carr & Huber Work Order: Description:

0609110

Project:

Plainwell Paper Phase II

G06523

Lab Sample ID: 0609110-23

Client Sample ID: PP-06-09-SB-7 (0-0.5') (D)

Sampled By:

09/05/06 15:35 **BDP**

Matrix:

Received:

09/07/06 08:40

Unit:

Soil ug/kg dry

By: CAR

Prepared:

Sampled:

09/13/06

Dilution Factor: 2 Date Analyzed:

09/18/06 By: JMK

QC Batch:

0610499

Analytical Batch: 6091962

Percent Solids: 89

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte		Analytical Result	RL	MDL
Surrogates		% Recovery	Control Limits		
2-Fluorophenol		70 RECOVERY	29-115		
Phenol-d6		64	38-107		
Nitrobenzene-d5		80	40-132		
2-Fluorobiphenyl		81	<i>50-118</i>		
2,4,6-Tribromophenol		106	<i>22-113</i>		
o-Terphenyl		85	41-125		

Client:

Fishbeck, Thompson, Carr & Huber

0609110

Project:

Plainwell Paper Phase II

G06523

Client Sample ID: PP-06-09-SB-7 (0-0.5') (D)

Sampled: 09/05/06 15:35

Lab Sample ID: 0609110-23

Sampled By:

BDP

Matrix:

Soil

Received:

Work Order:

Description:

09/07/06 08:40

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Percent Solids	89	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Client: Project: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-7 (7-7.5') (I)

Lab Sample ID: 0609110-24

Matrix:

Unit:

ug/kg dry

Dilution Factor: QC Batch:

0610499

Percent Solids:

Soil

2

91

Work Order:

0609110

Description:

G06523

Sampled:

Received:

09/05/06 15:40

Sampled By: **BDP**

09/07/06 08:40

Prepared:

09/13/06 By: CAR

Date Analyzed:

09/18/06

By: JMK

Analytical Batch: 6091962

*Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Analytical Result	RL	MDL
Acenaphthene	80Ј	720	2.9
Acenaphthylene	183	720	2.9
Anthracene	2503	720	3.5
Benzo(a)anthracene	4903	720	6.6
Benzo(a)pyrene	24 0 J	720	6.7
Benzo(b)fluoranthene	360J	720	6.6
Benzo(g,h,i)perylene	963	720	18
Benzo(k)fluoranthene	160J	720	4.8
4-Chloro-3-methylphenol	610 U	610	3.9
2-Chlorophenol	720 U	720	3.0
Chrysene	430J	720	6.1
Dibenz(a,h)anthracene	8.63	720	5.3
2,4-Dichlorophenol	720U	720	2.3
2,4-Dimethylphenol	720U	720	33
4,6-Dinitro-2-methylphenol	1800 U	1800	2.1
2,4-Dinitrophenol	1800 U	1800	7.7
Fluoranthene	1400	720	4.1
Fluorene	85J	720	3.4
Indeno(1,2,3-cd)pyrene	94]	720	16
2-Methylnaphthalene	713	720	3.3
2-Methylphenol	720U	720	2.2
3 & 4 Methylphenol	720U	720	14
Naphthalene	57.3	720	3.8
4-Nitrophenol	1800 U	1800	60
2-Nitrophenol	720U	720	3.1
Pentachlorophenol	44U	44	4.8
Phenanthrene	1000	720	3.9
Phenol	720U	720	3.8
Pyrene	1300	720	4.5
2,4,5-Trichlorophenol	720U	720	20
2,4,6-Trichlorophenol	720U		2.2
	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 4-Chloro-3-methylphenol 2-Chlorophenol Chrysene Dibenz(a,h)anthracene 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol 4,6-Dinitrophenol Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylphenol 3 & 4 Methylphenol Naphthalene 4-Nitrophenol Pentachlorophenol Phenanthrene Phenol Pyrene 2,4,5-Trichlorophenol	Acenaphthene 80 J Acenaphthylene 18 J Anthracene 250 J Benzo(a)anthracene 490 J Benzo(a)pyrene 240 J Benzo(b)fluoranthene 360 J Benzo(g,h,i)perylene 96 J Benzo(k)fluoranthene 160 J 4-Chloro-3-methylphenol 610 U 2-Chlorophenol 720 U Chrysene 430 J Dibenz(a,h)anthracene 8.6 J 2,4-Dichlorophenol 720 U 2,4-Dimethylphenol 720 U 4,6-Dinitro-2-methylphenol 1800 U 2,4-Dinitrophenol 1800 U Fluoranthene 1400 Fluoranthene 1400 Fluorene 85 J Indeno(1,2,3-cd)pyrene 94 J 2-Methylphenol 720 U 3 & 4 Methylphenol 720 U Naphthalene 57 J 4-Nitrophenol 1800 U 2-Nitrophenol 720 U Pentachlorophenol 44 U Phenolhylphenol 720 U Pyrene 1300 2,4,5-Trichloropheno	Acenaphthene 80J 720 Acenaphthylene 183 720 Anthracene 250J 720 Benzo(a)anthracene 490J 720 Benzo(b)fluoranthene 360J 720 Benzo(b)fluoranthene 360J 720 Benzo(k)fluoranthene 160J 720 Benzo(k)fluoranthene 160J 720 4-Chloro-3-methylphenol 610U 610 2-Chlorophenol 720U 720 Chrysene 430J 720 Dibenz(a,h)anthracene 8.6J 720 2,4-Dichlorophenol 720U 720 2,4-Dimethylphenol 720U 720 2,4-Dimethylphenol 720U 720 4,6-Dinitro-2-methylphenol 1800U 1800 2,4-Dinitrophenol 1800U 1800 2,4-Dinitrophenol 1800U 1800 2,4-Dinitrophenol 1800U 1800 2,4-Dinitrophenol 1800U 1800 2,-Wethylphenol 720U 720

Continued on next page

Page 84 of 112

^{*}See Statement of Data Qualifications

Client: Fishbeck, Thompson, Carr & Huber

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-7 (7-7.5') (I)

Lab Sample ID: 0609110-24

Matrix:

Project:

Soil

Unit: ug/kg dry

Dilution Factor: 2

QC Batch: 0610499

Percent Solids: 91 Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 15:40

Sampled By: **BDP**

Received:

09/07/06 08:40

Prepared: Date Analyzed: 09/13/06 By: CAR

09/18/06

By: JMK

Analytical Batch: 6091962

*Semivolatile Organic Compounds by EPA Method 8270C (Continued)

		Analytical		
Analyte		Result	RL	MDL
	% Recovery	Control Limits		
	54	<i>29-115</i>		
	57	38-107		
	78	40-132		
	81	50-118		
	15	<i>22-113</i>		
	87	41-125		
	Analyte	% Recovery 54 57 78 81 15	Analyte Result % Recovery Control Limits 54 29-115 57 38-107 78 40-132 81 50-118 15 22-113	Analyte Result RL % Recovery Control Limits 54 29-115 57 38-107 78 40-132 81 50-118 15 22-113

*See Statement of Data Qualifications

Page 85 of 112

Client:

Fishbeck, Thompson, Carr & Huber

Work Order:

0609110

Project:

Plainwell Paper Phase II

Description:

G06523

Percent Solids:

Client Sample ID: PP-06-09-SB-7 (7-7.5') (I)

Sampled:

09/05/06 15:40

Lab Sample ID: **0609110-24**

Sampled By:

BDP

Matrix:

Soil 91

Received:

09/07/06 08:40

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result	RL	MDL Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Arsenic	28000	100	23 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Cadmium	1400	50	7.3 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Chromium	30000	100	42 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Copper	250000	500	110 ug/kg dry wt.	5	USEPA-6020A	09/18/06 DSC	0610391
Lead	180000	500	210 ug/kg dry wt.	5	USEPA-6020A	09/18/06 DSC	0610391
Mercury	6300	500	48 ug/kg dry wt.	10	USEPA-7471A	09/12/06 KJB	0610420
Selenium	380	100	63 ug/kg dry wt.	1	USEPA-6020A	09/18/06 DSC	0610391
Zinc	620000	20000	9100 ug/kg dry wt.	20	USEPA-6020A	09/18/06 DSC	0610391

Client:

Fishbeck, Thompson, Carr & Huber

Project:

Plainwell Paper Phase II

Client Sample ID: PP-06-09-SB-7 (7-7.5') (I)

Lab Sample ID: 0609110-24 Matrix:

Soil

Work Order:

0609110

Description:

G06523

Sampled:

09/05/06 15:40

Sampled By:

BDP

Received:

09/07/06 08:40

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Percent Solids	91	0.10	0.10	%	1	USEPA-3550B	09/11/06 SSM	0610473

Polychlorinated Biphenyls (PCBs) by EPA Method 8082

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610427 3510C Liquid-Liqu	id Extraction	on/USEPA	\-8082			·			
Method Blank Unit: ug/L			. ,		· · · · · · · · · · · · · · · · · · ·	Analyzed: Analytical E	Batch:	09/13/2006 6091419	By: JLW
PCB-1016			0.20U					0.20	0.046
PCB-1221			0.20U					0.20	0.053
PCB-1232			0.20U					0.20	0.050
PCB-1242			0.20U					0.20	0.053
PCB-1248			0.20U					0.20	0.024
PCB-1254			0.20U					0.20	0.038
PCB-1260			0.20U					0.20	0.045
Surrogates									
Decachlorobiphenyl				91	<i>12-120</i>				
Tetrachloro-m-xylene				68	36-114				
Laboratory Control Sample Unit: ug/L						Analyzed: Analytical E	Batch:	09/13/2006 6091419	By: JLW
PCB-1016		1.00	0.819	82	63-129		20	0.20	0.046
PCB-1260		1.00	0.894	89	48-136		20	0.20	0.045
Surrogates									
Decachlorobiphenyl				97	12-120				
Tetrachloro-m-xylene				60	36-114				
Matrix Spike 0609110-04 PP-06-09-1 Unit: ug/L	ΓW-3 (8-13	(I) (I)				Analyzed: Analytical E	Batch:	09/13/2006 6091419	By: JLW
PCB-1016	0.20 U	0.952	0.848	89	44-152		11	0.20	0.046
PCB-1010 PCB-1260	0.20 U	0.952	0.920	97	58-132		17	0.20	0.045
	0.20 0	0.552	0.52.0	٥,	30 132		1,	0.20	0.043
Surrogates Decachlorobiphenyl				103	12-120				
Tetrachloro-m-xylene				78	36-114				
	DD 06 00	7341 2 70	4012 (72)			A 1 t		00/40/0000	
Matrix Spike Duplicate 0609110-04 Unit: ug/L	PP-06-09-	· I VV-3 (8-	-13") (1)			Analyzed: Analytical E	Batch:	09/13/2006 6091419	By: JLW
PCB-1016	0.20 U	0.952	0.795	84	44-152	6	11	0.20	0.046
PCB-1260	0.20 U	0.952	0.876	92	58-132	5	17	0.20	0.045
Surrogates									
Decachlorobiphenyl				96	12-120				
Tetrachloro-m-xylene				73	36-114				
QC Batch: 0610452 3550B Sonication	Extraction	/USEPA-8	082						
Method Blank						Analyzed:	takah :	09/13/2006	By: JLW
Unit: ug/kg wet	·					Analytical E	atcn:	6091419	
PCB-1016			330U					330	4.3

Polychlorinated Biphenyls (PCBs) by EPA Method 8082 (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610452 (Continued) 3	550B Sonicat	ion Extrac	tion/USEP/	A- 8082					
Method Blank (Continued)						Analyzed:		09/13/2006	By: JLW
Unit: ug/kg wet			· · · · · · · · · · · · · · · · · · ·			Analytical E	Batch:	6091419	
PCB-1221			330 U					330	12
PCB-1232			330 U					330	4.5
PCB-1242			330 U					330	6.2
PCB-1248			330U					330	3.7
PCB-1254			330 U					330	6.0
PCB-1260			330 U					330	4.4
Surrogates									
Decachlorobiphenyl			•	95	28-139				
Tetrachloro-m-xylene				88	32-129				
Laboratory Control Sample						Analyzed:		09/13/2006	By: JLW
Unit: ug/kg wet						Analytical I	Batch:	6091419	·
PCB-1016		167	143	86	53-157		20	330	4.3
PCB-1260		167	152	91	70-136		20	330	4.4
Surrogates									
Decachlorobiphenyl				95	28-139				
Tetrachloro-m-xylene				89	32-129				
Matrix Spike 0609110-12 PP-06-09	9-SB-2 (9-10')	(I)				Analyzed:		09/13/2006	By: JLW
Unit: ug/kg dry						Analytical I	Batch:	6091419	
PCB-1016	560 U	283	185	66	47-150		20	560	7.3
PCB-1260	560 U	283	230	82	59-134		20	560	7.5
Surrogates									
Decachlorobiphenyl				70	28-139				
Tetrachloro-m-xylene				63	32-129				
Matrix Spike Duplicate 0609110-:	12 PP-06-09-9	SB-2 (9-1	0') (I)			Analyzed:		09/14/2006	By: JLW
Unit: ug/kg dry		(- / (-/			Analytical I	Batch:	6091419	,
PCB-1016	560 U	283	198	70	47-150	7	20	560	7.3
PCB-1260	560 U	283	217	77	59-134	6	20	560	7.5 7.5
Surrogates									
Decachlorobiphenyl				72	28-139				
Tetrachloro-m-xylene				67	32-129				

Volatile Organics by EPA Method 8260B

	Sample	Spike		Spike	Control		RPD		
Analyte	Conc.	Qty.	Result	% Rec.	Limits	RPD	Limits	RL	MDL

QC Batch: 0610570 5030B Aqueous Purge & Trap/USEPA-8260B

Method Blank		Analyzed:	09/11/2006	By: JDM
Unit: ug/L		Analytical Batch:	6091422	
Acetone	20 U		20	1.1
Acrylonitrile	2.0U		2.0	0.45
Benzene	1.0U		1.0	0.065
Bromobenzene	1.0 U		1.0	0.062
Bromochioromethane	1.0U		1.0	0.13
Bromodichloromethane	1.0U		1.0	0.11
Bromoform	1.0U		1.0	0.15
Bromomethane	5.0 U		5.0	0.25
n-Butylbenzene	1.0U		1.0	0.34
sec-Butylbenzene	1.0U		1.0	0.28
tert-Butylbenzene	1.0U		1.0	0.12
Carbon Disulfide	1.0U		1.0	0.21
Carbon Tetrachloride	1.0 U		1.0	0.081
Chlorobenzene	1.0 U		1.0	0.11
Chloroethane	5.0 U		5.0	0.16
Chloroform	1.0U		1.0	0.17
Chloromethane	5.0U		5.0	0.18
1,2-Dibromo-3-chloropropane	5.0U		5.0	0.59
Dibromochloromethane	1.0U		1.0	0.13
1,2-Dibromoethane	1.0U		1.0	0.086
Dibromomethane	1.0U		1.0	0.18
trans-1,4-Dichloro-2-butene	1.0U		1.0	0.46
1,2-Dichlorobenzene	1.0U		1.0	0.29
1,3-Dichlorobenzene	1.0 U		1.0	0.15
1,4-Dichlorobenzene	1.0 U		1.0	0.26
Dichlorodifluoromethane	5.0 U		5.0	0.19
1,1-Dichloroethane	1.0U		1.0	0.16
1,2-Dichloroethane	1.0U		1.0	0.086
1,1-Dichloroethene	1.0 U		1.0	0.13
cis-1,2-Dichloroethene	1.0U		1.0	0.16
trans-1,2-Dichloroethene	1.0U		1.0	0.15
1,2-Dichloropropane	1.0U		1.0	0.17
cis-1,3-Dichloropropene	1.0U		1.0	0.072
trans-1,3-Dichloropropene	1.0U		1.0	0.087
Ethylbenzene	1.0U		1.0	0.11
Ethyl Ether	5.0 U		5.0	0.19

Continued on next page

Page 90 of 112

Volatile Organics by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610570 (Continued) 503	30B Aqueou	s Purge 8	& Trap/USE	PA-8260B				· · · · · · · · · · · · · · · · · · ·	
Method Blank (Continued) Unit: ug/L		-				Analyzed: Analytical B	atch:	09/11/2006 6091422	By: JDN
2-Hexanone			5.0 U					5.0	0.40
Iodomethane			1.0 U					1.0	0.31
Isopropylbenzene			1.0U					1.0	0.078
4-Isopropyltoluene			5.0 U					5.0	0.14
Methyl tert-Butyl Ether			5.0 U					5.0	0.074
Methylene Chloride			5.0 U					5.0	0.21
2-Butanone (MEK)			5.0 U					5.0	0.57
2-Methylnaphthalene			5.00					5.0	0.25
4-Methyl-2-pentanone (MIBK)			5.00					5.0	0.19
Naphthalene			5.0U					5.0	0.27
n-Propylbenzene			1.0 U					1.0	0.14
Styrene			1.0 U					1.0	0.25
1,1,1,2-Tetrachloroethane			1.0U					1.0	0.14
1,1,2,2-Tetrachloroethane			1.0U					1.0	0.12
Tetrachloroethene			1.0U					1.0	0.13
Tetrahydrofuran			5.0U					5.0	0.86
Toluene	•		1.0U					1.0	0.26
1,2,3-Trichlorobenzene			5.00					5.0	0.32
1,2,4-Trichlorobenzene			5.0U					5.0	0.36
1,1,1-Trichloroethane			1.0U					1.0	0.15
1,1,2-Trichloroethane			1.0U					1.0	0.11
Trichloroethene			1.0U					1.0	0.14
Trichlorofluoromethane			1.0U					1.0	0.16
1,2,3-Trichloropropane			1.0U					1.0	0.13
1,2,4-Trimethylbenzene			1.0U					1.0	0.29
1,3,5-Trimethylbenzene			1.0U					1.0	0.22
Vinyl Chloride			1.0U					1.0	0.15
Xylene, Meta + Para			2.0 U					2.0	0.16
Xylene, Ortho			1.0U					1.0	0.097
Surrogates									
Dibromofluoromethane				100	<i>79-124</i>				
1,2-Dichloroethane-d4				97	75-128				
Toluene-d8				97	87-113				
4-Bromofluorobenzene				100	<i>70-121</i>				
Laboratory Control Sample					·····	Analyzed:		09/11/2006	By: JDM
Unit: ug/L						Analytical B	atch:	6091422	
Benzene		40.0	39.7	99	79-120		20	1.0	0.065

Continued on next page

Page 91 of 112

Volatile Organics by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610570 (Continu	ed) 5030B Aqueou	ıs Purge 8	t Trap/USE	PA-8260B	1				
Laboratory Control Sample (9 Unit: ug/L	Continued)					Analyzed: Analytical B	atch:	09/11/2006 6091422	By: JDM
Chlorobenzene		40.0	40.2	100	79-122		20	1.0	0.11
1,1-Dichloroethene		40.0	39.2	98	72-126		20	1.0	0.13
Toluene		40.0	40.7	102	79-126		20	1.0	0.26
Trichloroethene		40.0	40.3	101	71-127		20	1.0	0.14
Surrogates									
Dibromofluoromethane				99	<i>79-124</i>				
1,2-Dichloroethane-d4				101	<i>75-128</i>				
Toluene-d8				99	87-113				
4-Bromofluorobenzene				99	70-121				
Matrix Spike 0609110-06 PP- Unit: ug/L	·06-09-TW-6 (10-1	5') (I)				Analyzed: Analytical B	atch:	09/11/2006 6091422	By: JDM
Benzene	1.0 U	40.0	43.4	109	81-132		16		0.065
Chlorobenzene	1.0 U	40.0	43.4 42.1	109	83-128		16	1.0 1.0	0.065
1,1-Dichloroethene	1.0 U	40.0	44.0	110	74-148		20	1.0	0.11
Toluene	1.0 U	40.0	43.8	109	82-134		20 17	1.0	0.13
Trichloroethene	1.0 U	40.0	43.6 43.4	109	73-139		18	1.0	0.20
	1.0 0	40.0	43.4	100	73-139		10	1.0	0.14
Surrogates				101	<i>79-124</i>				
Dibromofluoromethane				101	75-124 75-128				
1,2-Dichloroethane-d4									
Toluene-d8				104	87-113				
4-Bromofluorobenzene				99	70-121				
Matrix Spike Duplicate 0609 Unit: ug/L	110-06 PP-06-09-	TW-6 (10	-15') (I)			Analyzed: Analytical B	atch:	09/11/2006 6091422	By: JDM
Benzene	1.0 U	40.0	44.2	111	81-132	2	16	1.0	0.065
Chlorobenzene	1.0 U	40.0	43.7	109	83-128	4	16	1.0	0.11
1,1-Dichloroethene	1.0 U	40.0	45.4	113	74-148	3	20	1.0	0.13
Toluene	1.0 U	40.0	44.8	112	82-134	2	17	1.0	0.26
Trichloroethene	1.0 U	40.0	43.9	110	73-139	1	18	1.0	0.14
Surrogates									
Dibromofluoromethane				99	<i>79-124</i>				
1,2-Dichloroethane-d4				100	75-128				
Toluene-d8				104	87-113				
4-Bromofluorobenzene				100	70-121				
QC Batch: 0610571 5030B Aq	ueous Purge & Tra	p/USEPA-	8260B						
Method Blank						Analyzed:		09/11/2006	By: JD№
Unit: ug/kg wet						Analytical B	atch:	6091423	
Acetone			1000 U					1000	57

Volatile Organics by EPA Method 8260B (Continued)

An	Samı alyte Cor	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
1									

QC Batch: 0610571 (Continued) 5030B Aqueous Purge & Trap/USEPA-8260B

Method Blank (Continued)	***************************************	Analyzed:	09/11/2006	By: JDM
Unit: ug/kg wet		Analytical Batch:	6091423	
Acrylonitrile	100U		100	22
Benzene	50 U		50	3.2
Bromobenzene	100U		100	3.1
Bromochloromethane	100U		100	6.7
Bromodichloromethane	100U		100	5.6
Bromoform	100U		100	7.6
Bromomethane	200 U		200	13
n-Butylbenzene	50 U		50	17
sec-Butylbenzene	50 U		50	14
tert-Butylbenzene	50 U		50	5.9
Carbon Disulfide	250U		250	10
Carbon Tetrachloride	50 U		50	4.0
Chlorobenzene	50 U		50	5.7
Chloroethane	250 U		250	8.0
Chloroform	50 U		50	8.4
Chloromethane	250U		250	9.1
1,2-Dibromo-3-chloropropane	50 U		50	30
Dibromochloromethane	100 U		100	6.4
1,2-Dibromoethane	50 U		50	5.4
Dibromomethane	250 U		250	9.0
trans-1,4-Dichloro-2-butene	50 U		50	23
1,2-Dichlorobenzene	100U		100	15
1,3-Dichlorobenzene	100U		100	7.4
1,4-Dichlorobenzene	100U		100	13
Dichlorodifluoromethane	250 U		250	9.4
1,1-Dichloroethane	50 U		50	8.0
1,2-Dichloroethane	50 U		50	4.3
1,1-Dichloroethene	50 U		50	6.6
cis-1,2-Dichloroethene	50 U		50	7.8
trans-1,2-Dichloroethene	50 U		50	7.5
1,2-Dichloropropane	50 U		50	8.7
cls-1,3-Dichloropropene	50 U		50	3.6
trans-1,3-Dichloropropene	50 U		50	4.3
Ethylbenzene	50 U		50	5.5
Ethyl Ether	200U		200	9.4

Continued on next page

Page 93 of 112

Volatile Organics by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610571 (Continued)	5030B Aqueou	s Purge 8	k Trap/USE	PA-8260E	3				***************************************
Method Blank (Continued)						Analyzed:		09/11/2006	By: JDM
Unit: ug/kg wet						Analytical Bato	:h:	6091423	
2-Hexanone			2500 U					2500	20
Iodomethane			100 U					100	16
Isopropylbenzene			250 U					250	3.9
4-Isopropyitoluene			100 U					100	7.2
Methyl tert-Butyl Ether			250 U					250	3.7
Methylene Chloride			100 U					100	10
2-Butanone (MEK)			750 U					750	28
2-Methylnaphthalene			330U					330	12
4-Methyl-2-pentanone (MIBK)			2500 U					2500	9.5
Naphthalene			330U					330	14
n-Propylbenzene			100U					100	6.9
Styrene			50 U					50	2.2
1,1,1,2-Tetrachloroethane			100 U					100	7.2
1,1,2,2-Tetrachloroethane			50 U					50	5.9
Tetrachloroethene			50 U					50	6.7
Fetrahydrofuran			1000 U					1000	43
Foluene			100 U					100	13
1,2,3-Trichlorobenzene			330 U					330	16
1,2,4-Trichlorobenzene			330 U					330	18
1,1,1-Trichloroethane			50 U					50	7.6
L,1,2-Trichloroethane			50 U					50	5.7
Trichloroethene			50 U					50	7.1
Trichlorofluoromethane			100 U					100	8.2
1,2,3-Trichloropropane			100U					100	6.5
1,2,4-Trimethylbenzene			100 U					100	4.6
1,3,5-Trimethylbenzene			100 U					100	3.4
/inyl Chloride			40 U					40	7.7
Xylene, Meta + Para			100 U					100	7.8
Xylene, Ortho			50 U					50	4.8
Method Blank						Analyzed:		09/11/2006	By: JDM
Unit: ug/L						Analytical Bato	h:	6091423	
Surrogates									
Dibromofluoromethane				100	<i>78-121</i>				
1,2-Dichloroethane-d4				97	84-114				
Toluene-d8				97	85-114				

Continued on next page

Page 94 of 112

Volatile Organics by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610571 (Continued) 5030B Aqueou	ıs Purge 8	k Trap/USE	PA-8260B					
Method Blank (Continued) Unit: ug/L						Analyzed: Analytical E	Batch:	09/11/2006 6091423	By: JDM
Surrogates (Continued)									
4-Bromofluorobenzene				100	69-119				
Laboratory Control Sample Unit: ug/kg wet						Analyzed: Analytical E	Batch:	09/11/2006 6091423	By: JDM
Benzene		2000	1980	99	77-122		20	50	3.2
Chlorobenzene		2000	2010	100	76-128		20	50	5.7
1,1-Dichloroethene		2000	1960	98	71-129		20	50	6.6
Toluene		2000	2030	102	77-127		20	100	13
Trichloroethene		2000	2010	101	72-129		20	50	7.1
Laboratory Control Sample Unit: ug/L						Analyzed: Analytical E	Batch:	09/11/2006 6091423	By: JDM
Surrogates									
Dibromofluoromethane				99	<i>78-121</i>				
1,2-Dichloroethane-d4				101	84-114				
Toluene-d8				99	<i>85-114</i>				
4-Bromofluorobenzene				99	69-119				
Matrix Spike 0609110-19 PP-06 Unit: ug/kg dry	-09-SB-6 (0-1')	(I)				Analyzed: Analytical E	Batch:	09/11/2006 6091423	By: JDM
Benzene	55 . 7	2280	2470	106	62-134		18	55	3.5
Chlorobenzene	55 U	2280	2420	106	61-134		27	55	6.2
1,1-Dichloroethene	55 U	2280	2440	107	58-142		20	55	7.2
Toluene	652	2280	3060	106	62-137		24	110	14
Trichloroethene	55 U	2280	2460	108	60-140		21	55	7.8
Matrix Spike 0609110-19 PP-06 Unit: ug/L	-09-SB-6 (0-1')	(I)				Analyzed: Analytical E	Batch:	09/11/2006 6091423	By: JDM
Surrogates									
Dibromofluoromethane				99	<i>78-121</i>				
1,2-Dichloroethane-d4				102	84-114				
Toluene-d8				104	85-114				
4-Bromofluorobenzene				103	69-119				
Matrix Spike Duplicate 060911 Unit: ug/kg dry	0-19 PP-06-09-	SB-6 (0-1	.') (I)			Analyzed: Analytical E	Batch:	09/11/2006 6091423	By: JDM
Benzene	55.7	2280	2630	113	62-134	6	18	55	3.5
Continued on next page									
continued on next page									

Page 95 of 112

Volatile Organics by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610571 (Continu	red) 5030B Aqueou	s Purge 8	k Trap/USE	PA-8260B					
Matrix Spike Duplicate (Con Unit: ug/kg dry	tinued) 0609110	- 19 PP-0	6-09 - SB-6 ((0-1') (I)		Analyzed: Analytical	Batch:	09/11/2006 6091423	By: JDM
Chlorobenzene	55 U	2280	2540	111	61-134	5	27	55	6.2
1,1-Dichloroethene	55 U	2280	2520	111	58-142	3	20	55	7.2
Toluene	652	2280	3240	114	62-137	6	24	110	14
Trichloroethene	55 U	2280	2580	114	60-140	5	21	55	7.8
Matrix Spike Duplicate 0609 Unit: ug/L	110-19 PP-06-09-	SB-6 (0-1	') (I)			Analyzed: Analytical	Batch:	09/11/2006 6091423	By: JDM
Surrogates									
Dibromofluoromethane				101	<i>78-121</i>				
1,2-Dichloroethane-d4				102	84-114				
Toluene-d8				105	85-114				
4-Bromofluorobenzene				103	69-119				

Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits		RPD .imits	RL	MDL
QC Batch: 0610396 3510C Liquid-Liquid	uid Extractio	n/USEPA	-8270C						
Method Blank		4-94	***************************************		····	Analyzed:		09/11/2006	By: JMK
Unit: ug/L						Analytical Batc	h:	6091231	
Acenaphthene			5.0U					5.0	0.021
Acenaphthylene			5.0U					5.0	0.038
Anthracene			5.0U					5.0	0.030
Benzo(a)anthracene			1.0U					1.0	0.058
Benzo(a)pyrene			1.0U					1.0	0.031
Benzo(b)fluoranthene			1.0U					1.0	0.038
Benzo(k)fluoranthene			1.0U					1.0	0.048
Benzo(g,h,i)perylene			1.0 U					1.0	0.030
Chrysene			1.0 U					1.0	0.030
Dibenz(a,h)anthracene			2.0 U					2.0	0.019
Fluoranthene			1.0U					1.0	0.033
Fluorene			5.0 U					5.0	0.027
Indeno(1,2,3-cd)pyrene			2.0U					2.0	0.021
2-Methylnaphthalene			5.0U					5.0	0.022
Naphthalene			5.0U					5.0	0.022
Phenanthrene			2.0U					2.0	0.033
Pyrene			5.0U					5.0	0.044
Surrogates									
Nitrobenzene-d5				85	26-116				
2-Fluorobiphenyl				83	<i>37-123</i>				
o-Terphenyl				96	30-119				
Laboratory Control Sample Unit: ug/L						Analyzed: Analytical Batc	h:	09/11/2006 6091231	Ву: ЈМК
Acenaphthene		10.0	10.9	109	39-109		20	5.0	0.021
Naphthalene		10.0	10.3	103	49-116		20	5.0	0.022
Pyrene		10.0	10.7	107	46-114		20	5.0	0.044
Surrogates									
Nitrobenzene-d5				91	26-116				
2-Fluorobiphenyl				91	<i>37-123</i>				
o-Terphenyl				94	30-119				
Matrix Spike 0609112-03 LM-06-09- Unit: ug/L	MW4 (I)					Analyzed: Analytical Batc	h:	09/13/2006 6091433	Ву: ЈМК
Acenaphthene	5.0 U	9.90	10.3	104	34-113		15	5.0	0.021
Naphthalene	5.0 U	9.90	9.48	96	50-111		15	5.0	0.022

Continued on next page

Page 97 of 112

Analyte

QUALITY CONTROL REPORT

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

% Rec.

Result

Control

Limits

RPD

Limits

RL.

1.0

5.0

0.030

0.024

MDL

Spike Qty.

Sample

Conc.

Matrix Spike (Continued) 0 Unit: ug/L	0 609112-03 LM-06-0	09-MW4 (I)			Analyzed: Analytical B	atch:	09/13/2006 6091433	Ву: ЈМК
Pyrene	5.0 U	9.90	12.0	121	39-133		18	5.0	0.044
Surrogates									
Nitrobenzene-d5				83	26-116				
2-Fluorobiphenyl				81	<i>37-123</i>				
o-Terphenyl				91	30-119				
Matrix Spike Duplicate 060 Unit: ug/L	9112-03 LM-06-09-	MW4 (I)	······································			Analyzed: Analytical B	atch:	09/13/2006 6091433	Ву: ЈМК
Acenaphthene	5.0 U	9.90	10.3	105	34-113	0.6	15	5.0	0.021
Naphthalene	5.0 U	9.90	9.97	101	50-111	0. 0 5	15	5.0 5.0	0.021
Pyrene	5.0 U	9.90	12.0	121	39-133	0.03	18	5.0 5.0	0.022
•	5.00	9.90	12.0	121	23-733	0.05	10	3.0	0.044
Surrogates				o.c	26 116				
Nitrobenzene-d5				86	26-116				
2-Fluorobiphenyl				80	37-123				
o-Terphenyl				93	30-119				
QC Batch: 0610456 3510C I	Liquid-Liquid Extractio	on/USEPA	-8270C		***************************************	44.4.		· · · · · · · · · · · · · · · · · · ·	
Method Blank						Analyzed:		09/15/2006	By: JMK
Unit: ug/L						Analytical E	atch:	6091813	
Acenaphthene			5.0 U					5.0	0.021
Acenaphthene			5.0 U					5.0	0.021
Acenaphthylene			5.0 U					5.0	0.038
Acenaphthylene			5.0 U					5.0	0.038
Anthracene			5.0 U					5.0	0.030
Anthracene			5.0 U					5.0	0.030
Benzo(a)anthracene			1.0 U					1.0	0.058
Benzo(a)anthracene			1.0U					1.0	0.058
Benzo(a)pyrene			1.0 U					1.0	0.031
Benzo(a)pyrene			1.0 U					1.0	0.031
Benzo(b)fluoranthene			1.0 U					1.0	0.038
Benzo(b)fluoranthene			1.0 U					1.0	0.038
			1.0 U					1.0	0.048
Benzo(k)fluoranthene			1.00					1.0	0.040
Benzo(k)fluoranthene Benzo(k)fluoranthene			1.0U					1.0	0.048

Continued on next page

Benzo(g,h,i)perylene

4-Chloro-3-methylphenol

Page 98 of 112

1.0U

5.0 U

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL	_
								······		

QC Batch: 0610456 (Continued) 3510C Liquid-Liquid Extraction/USEF

Method Blank (Continued)			Analyzed:	09/15/2006	ву: ЈМК
Unit; ug/L			Analytical Batch:	6091813	
2-Chlorophenol	10 U			10	0.028
Chrysene	1.0U			1.0	0.030
Chrysene	1.0U			1.0	0.030
Dibenz(a,h)anthracene	2.0U			2.0	0.019
Dibenz(a,h)anthracene	2.0U			2.0	0.019
2,4-Dichlorophenol	10 U			10	0.022
2,4-Dimethylphenol	5.0U			5.0	0.54
4,6-Dinitro-2-methylphenol	20 U			20	0.24
2,4-Dinitrophenol	25 U			25	0.21
Fluoranthene	1.0U			1.0	0.033
Fluoranthene	1.0U			1.0	0.033
Fluorene	5.0 U			5.0	0.027
Fluorene	5.0 U			5.0	0.027
Indeno(1,2,3-cd)pyrene	2.0U			2.0	0.021
Indeno(1,2,3-cd)pyrene	2.0 U			2.0	0.021
2-Methylnaphthalene	5.00			5.0	0.022
2-Methylnaphthalene	5.0 บ			5.0	0.022
2-Methylphenol	10U			10	0.45
3 & 4 Methylphenol	20 U			20	0.38
Naphthalene	5.0U			5.0	0.022
Naphthalene	5.0U			5.0	0.022
4-Nitrophenol	25 U			25	0.44
2-Nitrophenol	5.00			5.0	0.038
Pentachlorophenol	1.0U			1.0	0.061
Phenanthrene	2.0 U			2.0	0.033
Phenanthrene	2.0U			2.0	0.033
Phenol	5.0U			5.0	0.055
Pyrene	5.0U			5.0	0.044
Pyrene	5.0 U			5.0	0.044
2,4,6-Trichlorophenol	4.0 U			4.0	0.025
2,4,5-Trichlorophenol	5.0U			5.0	0.030
Surrogates					
2-Fluorophenol	60	16-69			
Phenol-d6	40	11-49			
Nitrobenzene-d5	93				
Nitrobenzene-d5	93				

Continued on next page

Page 99 of 112

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD Limits	RL	MDL
QC Batch: 0610456 (Continued)	3510C Liquid-L	iquid Ext	raction/US	EPA-8270	С			
Method Blank (Continued)			. ,			Analyzed:	09/15/2006	Ву: ЈМК
Unit: ug/L						Analytical Batch:	6091813	
Surrogates (Continued)								
2-Fluorobiphenyl				91	<i>37-123</i>			
2-Fluorobiphenyl				91	<i>37-123</i>			
2,4,6-Tribromophenol				105	<i>32-127</i>			
o-Terphenyl				102	30-119			
o-Terphenyl				102	30-119			
Laboratory Control Sample						Analyzed:	09/15/2006	By: JMK
Unit: ug/L						Analytical Batch:	6091813	
Acenaphthene		10.0	9.18	92	39-109	20	5.0	0.021
Acenaphthene		10.0	9.18	92	39-109	20	5.0	0.021
4-Chloro-3-methylphenol		15.0	14.2	94	42-121	20	5.0	0.024
2-Chlorophenol		15.0	13.0	86	40-122	20	10	0.028
Naphthalene		10.1	8.68	86	49-116	20	5.0	0.022
Naphthalene		10.1	8.68	86	49-116	20	5.0	0.022
4-Nitrophenol		15.0	5.42	36	11-68	20	25	0.44
Pentachlorophenol		15.0	15.1	101	39-112	20	1.0	0.061
Phenot		15.0	5.73	38	19-55	20	5.0	0.055
Pyrene		10.0	9.88	99	46-114	20	5.0	0.044
Pyrene		10.0	9.88	99	46-114	20	5.0	0.044
Surrogates								
2-Fluorophenol				5 4	16-69			
Phenol-d6				36	11-49			
Nitrobenzene-d5				90	26-116			
Nitrobenzene-d5				90	26-116			
2-Fluorobiphenyl				89	<i>37-123</i>			
2-Fluorobiphenyl				89	37-123			
2,4,6-Tribromophenol				109	32-127			
o-Terphenyl				98	30-119			
o-Terphenyl				98	30-119			
Matrix Spike 0609110-03 PP-06-0	9-TW-5 (10-1	5') (I)				Analyzed:	09/16/2006	Ву: ЈМК
Unit: ug/L		- / \-/				Analytical Batch:	6091813	
Acenaphthene	5.0 U	9.62	8.69	90	34-113	15	5.0	0.021
Acenaphthene	5.0 U	9.62	8.69	90	34-113	15	5.0	0.021
4-Chloro-3-methylphenol	5.0 U	14.4	13.3	92	43-127	18	5.0	0.024
2-Chlorophenol	10 U	14.4	11.6	81	35-112	17	10	0.028

Continued on next page

Page 100 of 112

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610456 (Continu	ıed) 3510C Liquid-l	iquid Ext	raction/US	EPA-82700	C				
Matrix Spike (Continued) 06 Unit: ug/L	09110-03 PP-06-0	9-TW-5 ((10-15') (I)	· · · · · · · · · · · · · · · · · · ·		Analyzed: Analytical	Batch:	09/16/2006 6091813	By: JMK
Naphthalene	0.0760	9.71	8.58	88	50-111		15	5.0	0.022
Naphthalene	0.0760	9.71	8.58	88	50-111		15	5.0	0.022
4-Nitrophenol	25 U	14.4	4.88	34	23-55		20	25	0.44
Pentachlorophenol	1.0 U	14.4	13.5	94	42-106		36	1.0	0.061
Phenol	5.0 U	14.4	4.50	31	21-54		17	5.0	0.055
Pyrene	0.0740	9.62	9.37	97	39-133		18	5.0	0.044
Pyrene	0.0740	9.62	9.37	97	39-133		18	5.0	0.044
Surrogates									
2-Fluorophenol				46	16-69				
Phenol-d6				30	11-49				
Nitrobenzene-d5				85	26-116				
Nitrobenzene-d5				85	26-116				
2-Fluorobiphenyl				85	37-123				
2-Fluorobiphenyl				85	<i>37-123</i>				
2,4,6-Tribromophenol				103	32-127				
o-Terphenyl				98	30-119				
o-Terphenyl				98	30-119				
Matrix Spike Duplicate 0609	110-03 PP-06-09-	TW-5 (10	-15') (I)			Analyzed:		09/16/2006	By: JMK
Unit: ug/L			, , ,			Analytical	Batch:	6091813	
Acenaphthene	5.0 U	9.62	8.81	92	34-113	1	15	5.0	0.021
Acenaphthene	5.0 U	9.62	8.81	92	34-113	1	15	5.0	0.021
4-Chioro-3-methylphenol	5.0 U	14.4	13.8	96	43-127	4	18	5.0	0.024
2-Chlorophenol	10 U	14.4	12.2	85	35-112	5	17	10	0.028
Naphthalene	0.0760	9.71	8.86	90	50-111	3	15	5.0	0.022
Naphthalene	0.0760	9.71	8.86	90	50-111	3	15	5.0	0.022
4-Nitrophenol	25 U	14.4	5.06	35	23-55	4	20	25	0.44
Pentachlorophenol	1.0 U	14.4	13.1	91	42-106	3	36	1.0	0.061
Phenol	5.0 U	14.4	4.72	33	21-54	5	17	5.0	0.055
Pyrene	0.0740	9.62	9.39	97	39-133	0.2	18	5.0	0.044
Pyrene	0.0740	9.62	9.39	97	39-133	0.2	18	5.0	0.044
Surrogates									
2-Fluorophenol				48	16-69				
Phenol-d6				31	11-49				
				01	20 110				
Nitrobenzene-d5				91	26-116				

Continued on next page

Page 101 of 112

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610456 (Continu	ed) 3510C Liquid-L	iquid Ext	raction/US	EPA-8270C					
Matrix Spike Duplicate (Cont Unit: ug/L	inued) 0609110	03 PP-06	5-09-TW-5	(10-15') (I)	Analyzed: Analytical B	atch:	09/16/2006 6091813	Ву: ЈМК
Surrogates (Continued)									
2-Fluorobiphenyl				89	<i>37-123</i>				
2-Fluorobiphenyl				89	<i>37-123</i>				
2,4,6-Tribromophenol				106	32-127				
o-Terphenyl				99	30-119				
o-Terphenyl				99	30-119				
QC Batch: 0610499 3550B Sor	nication Extraction/	USEPA-8	270C						

Method Blank		Analyzed:	09/18/2006	By: JMK
Unit: ug/kg wet		Analytical Batch:	6091962	
Acenaphthene	330U		330	1.3
Acenaphthene	330U		330	1.3
Acenaphthylene	330U		330	1.3
Acenaphthylene	330U		330	1.3
Anthracene	330U		330	1.6
Anthracene	330 U		330	1.6
Benzo(a)anthracene	330 U		330	3.0
Benzo(a)anthracene	330 U		330	3.0
Benzo(a)pyrene	330 U		330	3.0
Benzo(b)fluoranthene	330 U		330	3.0
Benzo(b)fluoranthene	330U		330	3.0
Benzo(k)fluoranthene	330U		330	2.2
Benzo(a)pyrene	330U		330	3.0
Benzo(g,h,i)perylene	330U		330	8.4
Benzo(g,h,i)perylene	330U		330	21
Benzo(k)fluoranthene	330U		330	2.2
Chrysene	330U		330	2.8
Dibenz(a,h)anthracene	330 U		330	21
Fluoranthene	330U		330	1.9
4-Chloro-3-methylphenol	28 0 U		280	1.8
Fluorene	330 U		330	1.5
Indeno(1,2,3-cd)pyrene	330 U		330	19
2-Methylnaphthalene	330 U		330	1.5
Naphthalene	330U		330	1.8
Phenanthrene	330U		330	1.8
Pyrene	330U		330	2.0

Continued on next page

Page 102 of 112

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0610499 (Continued)	3550B Sonicati	ion Extra	ction/USEP/	4-8270C					
Method Blank (Continued)						Analyzed:		09/18/2006	Ву: ЈМК
Unit: ug/kg wet				*********		Analytical Bato	:h:	6091962	
2-Chlorophenol			330 U					330	1.4
Chrysene			330 U					330	2.8
Dibenz(a,h)anthracene			330 U					330	2.4
2,4-Dichlorophenol			330 U					330	1.0
2,4-Dimethylphenol			330 U					330	15
1,6-Dinitro-2-methylphenol			830 U					830	0.98
2,4-Dinitrophenol			830 U					830	3.5
Fluoranthene			330U					330	1.9
Fluorene			330U					330	1.5
Indeno(1,2,3-cd)pyrene			330U					330	7.2
2-Methylnaphthalene			330U					330	1.5
2-Methylphenol			330U					330	1.0
3 & 4 Methylphenol			330 U					330	6.4
Naphthalene			330 U					330	1.8
4-Nitrophenol			830 U					830	28
2-Nitrophenol			330 U					330	1.4
Pentachlorophenol			20 U					20	2.2
Phenanthrene			330 U					330	1.8
Phenol			330 U					330	1.8
Pyrene			330 U					330	2.0
2,4,5-Trichlorophenol			330 U					330	9.2
2,4,6-Trichlorophenol			330 U					330	1.0
Surrogates									
2-Fluorophenol				83	29-115				
Phenol-d6				81	38-107				
Nitrobenzene-d5				92	40-132				
Nitrobenzene-d5				92	40-132				
2-Fluorobiphenyl				95	50-118				
2-Fluorobiphenyl				95	50-118				
2,4,6-Tribromophenol				97	22-113				
o-Terphenyl				93	41-125				
o-Terphenyl				93	41-125				
Laboratory Control Sample Unit: ug/kg wet						Analyzed:	-h•	09/18/2006 6091962	Ву: ЈМК
						Analytical Bate			
Acenaphthene		333	320	96	47-115		20	330	1.3

Continued on next page

Page 103 of 112

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

Spike

Control

Analyte	Conc.	Qty.	Result	% Rec.	Limits	RPD	Limits	RL	MDL
QC Batch: 0610499 (Continue	ed) 3550B Sonicati	ion Extra	ction/USEP	A-8270C					
.aboratory Control Sample (C Jnit: ug/kg wet	Continued)				-	Analyzed: Analytical B	Batch:	09/18/2006 6091962	Ву: ЈМК
Acenaphthene		333	320	96	47-115		20	330	1.3
4-Chloro-3-methylphenol		500	500	100	57-131		20	280	1.8
Naphthalene		337	326	97	57-131		20	330	1.8
Pyrene		333	322	97	44-123		20	330	2.0
2-Chlorophenol		500	460	92	51-133		20	330	1.4
Naphthalene		337	326	97	57-131		20	330	1.8
1-Nitrophenol		500	376	75	41-129		20	830	28
Pentachlorophenol		500	539	108	25-133		20	20	2.2
Phenol		500	423	85	64-118		20	330	1.8
Pyrene		333	322	97	44-123		20	330	2.0
Gurrogates									
2-Fluorophenol				84	<i>29-115</i>				
Phenol-d6				81	<i>38-107</i>				
Nitrobenzene-d5				88	40-132				
Nitrobenzene-d5				88	40-132				
2-Fluorobiphenyl				93	<i>50-118</i>				
2-Fluorobiphenyl				93	50-118				
2,4,6-Tribromophenol				106	22-113				
o-Terphenyl				93	41-125				
o-Terphenyl				93	41-125				
Matrix Spike 0609110-18 PP-	06-09-SB-5 (2.5-3.	5') (I)		······································		Analyzed:		09/18/2006	Ву: ЈМК
Unit: ug/kg dry					•	Analytical E	Batch:	6091962	
Acenaphthene	400 U	402	328	82	47-124		18	400	1.6
Acenaphthene	400 U	402	328	82	47-124		18	400	1.6
1-Chloro-3-methylphenol	340 U	602	556	92	63-116		18	340	2.2
Naphthalene	62.5 J	406	338	68	59-135		22	400	2.1
Pyrene	63.6 J	402	417	88	51-135		23	400	2.5
2-Chlorophenol	400 U	602	461	77	58-120		20	400	1.7
Naphthalene	62.5 J	406	338	68	59-135		22	400	2.1
1-Nitrophenol	1000 U	602	491	82	51-122		22	1000	33
Pentachlorophenol	24 U	602	495	82	33-130		21	24	2.6
Phenol	400 U	602	400	66	53-114		13	400	2.1
Pyrene	63.6 J	402	417	88	51-135		23	400	2,5
Surrogates									
2-Fluorophenol				65	29-115	•			

Continued on next page

Page 104 of 112

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL.	MDL
QC Batch: 0610499 (Continu	ed) 3550B Sonicat	ion Extra	ction/USEP	A-8270C					
Matrix Spike (Continued) 06 Jnit: ug/kg dry	09110-18 PP-06-0	9-SB-5 (2	2.5-3.5') (I))		Analyzed: Analytical I	Batch:	09/18/2006 6091962	Ву: ЈМК
Surrogates (Continued)									
Phenol-d6				64	<i>38-107</i>				
Vitrobenzene-d5				75	40-132				
Nitrobenzene-d5				75	40-132				
2-Fluorobiphenyl				75	50-118				
2-Fluorobiphenyl				75	<i>50-118</i>				
2,4,6-Tribromophenol				98	22-113				
o-Terphenyl				83	41-125				
o-Terphenyl				83	41-125				
Matrix Spike Duplicate 0609 Jnit: ug/kg dry	110-18 PP-06-09-	SB-5 (2.5	-3.5') (I)			Analyzed: Analytical	Batch:	09/18/2006 6091962	Ву: ЈМК
Acenaphthene	400 U	402	367	91	47-124	11	18	400	1.6
Acenaphthene	400 U	402	367	91	47-124	11	18	400	1.6
1-Chloro-3-methylphenol	340 U	602	601	100	63-116	8	18	340	2.2
Naphthalene	62.5 J	406	394	82	59-135	15	22	400	2.1
Pyrene	63.6 J	402	411	86	51-135	2	23	400	2.5
2-Chlorophenol	400 U	602	512	85	58-120	10	20	400	1.7
Naphthalene	62.5 J	406	394	82	59-135	15	22	400	2.1
I-Nitrophenol	1000 U	602	461	77	51-122	6	22	1000	33
Pentachlorophenol	24 U	602	596	99	33-130	18	21	24	2.6
Phenol	400 U	602	453	75	53-114	12	13	400	2.1
Pyrene	63.6 J	402	411	86	51-135	2	23	400	2.5
Surrogates									
2-Fluorophenol				73	<i>29-115</i>				
Phenol-d6				69	38-107				
Vitrobenzene-d5				84	40-132				
Nitrobenzene-d5				84	40-132				
2-Fluorobiphenyl				84	50-118				
2-Fluorobiphenyl				84	50-118				
2,4,6-Tribromophenol				109	22-113				
o-Terphenyl				93	41-125				
o-Terphenyl				93	41-125				

Total Metals by EPA 6000/7000 Series Methods

QC Туре	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Arsenic/USEPA-6020A									
QC Batch: 0610386 (30	020A Digestion)						Analyze	d: 09/ 15/200	6 By: JMF	
Method Blank			1.0 U	ug/L					1.0	0.47
Laboratory Control Sample	:	100	90.6	ug/L	91	80-106		20	1.0	0.47
0609110-04 PP-06-09	-TW-3 (8-13') (I)									
Matrix Spike	24.5	100	109	ug/L	85	82-111		20	1.0	0.47
Matrix Spike Duplicate	24.5	100	116	ug/L	91	82-111	6	20	1.0	0.47
QC Batch: 0610391 (30	050B Digestion)						Analyze	d: 09/18/200	6 By: DSC	
Method Blank			100 U	ug/kg dry Wt.					100	23
Laboratory Control Sample	!	20000	18700	ug/kg dry wt.	94	82-112		20	100	23
0609110-12 PP-06-09	-SB-2 (9-10') (I)									
Matrix Spike	5820	20000	23800	ug/kg dry vyt.	90	52-129		20	100	23
Matrix Spike Duplicate	5820	20000	23300	ug/kg dry wt.	87	52-129	2	20	100	23
Analyte:	Cadmium/USEPA-6020A	4								
QC Batch: 0610386 (30	020A Digestion)						Analyze	ed: 09/15/200	6 By: JMF	
Method Blank			0.20 U	ug/L					0.20	0.062
Laboratory Control Sample	2	100	92.7	ug/L	93	80-106		20	0.20	0.062
0609110-04 PP-06-09	-TW-3 (8-13') (I)									
Matrix Spike	0.0744	100	94.2	ug/L	94	79-114		20	0.20	0.062
Matrix Spike Duplicate	0.0744	100	94.4	ug/L	94	79-1 1 4	0.2	20	0.20	0.062
QC Batch: 0610391 (30	050B Digestion)						Analyze	ed: 09/18/200	6 By: DSC	
Method Blank			50 U	ug/kg dry wt.					50	7.3
Laboratory Control Sample	2	20000	18900	ug/kg dry wt.	95	81-112		20	50	7.3
0609110-12 PP-06-09	-SB-2 (9-10') (I)									
Matrix Spike	144	20000	18400	ug/kg dry wt	91	77-117		20	50	7.3
Matrix Spike Duplicate	144	20000	18200	ug/kg dry wt.	91	77-117	1	20	50	7.3
Analyte:	Chromium/USEPA-6020)A								
QC Batch: 0610386 (30	020A Digestion)						Analyze	ed: 09/15/2 0 0	06 By: JMF	
Method Blank			1.0 U	u g/L					1.0	0.66

Continued on next page

Page 106 of 112

Total Metals by EPA 6000/7000 Series Methods (Continued)

					·					
QC Туре	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Chromium/USEPA-6020	A (Conti	nued)							
QC Batch: 0610386 (C	ontinued) (3020A Digestion)						Analyze	d: 09/15/200	6 By: JMF	
Laboratory Control Sample	9	100	99.0	ug/L	99	84-119		20	1.0	0.66
0609110-04 PP-06-09	-TW-3 (8-13') (I)									
Matrix Spike	<rl.< td=""><td>100</td><td>86.3</td><td>ug/L</td><td>86</td><td>83-121</td><td></td><td>20</td><td>1.0</td><td>0.66</td></rl.<>	100	86.3	ug/L	86	83-121		20	1.0	0.66
Matrix Spike Duplicate	<rl< td=""><td>100</td><td>93.6</td><td>ug/L</td><td>94</td><td>83-121</td><td>8</td><td>20</td><td>1.0</td><td>0.66</td></rl<>	100	93.6	ug/L	94	83-121	8	20	1.0	0.66
QC Batch: 0610391 (3	050B Digestion)						Analyze	d: 09/18/200	6 By: DSC	
Method Blank			100 U	ug/kg dry wt.					100	42
Laboratory Control Sample	9	20000	20100	ug/kg dry wt.	100	86-122		20	100	42
0609110-12 PP-06-09	-SB-2 (9-10') (I)									
Matrix Spike	18200	20000	38600	ug/kg dry wt.	102	57-141		20	100	42
Matrix Spike Duplicate	18200	20000	38300	ug/kg dry wt.	100	57-141	0.8	20	100	42
Analyte:	Copper/USEPA-6020A									
QC Batch: 0610386 (3	020A Digestion)						Analyze	d: 09/15/200	6 By: JMF	
Method Blank			1.0 U	ug/L					1.0	0.32
Laboratory Control Sample	9	100	99.9	ug/L	100	86-116		20	1.0	0.32
0609110-04 PP-06-09	7-TW-3 (8-13') (I)									
Matrix Spike	0.650	100	81.6	ug/L	81	77-114		20	1.0	0.32
Matrix Spike Duplicate	0.650	100	87.0	ug/L	86	77-114	6	20	1.0	0.32
QC Batch: 0610391 (3	050B Digestion)						Analyze	d: 09/18/200	6 By: DSC	· · · · · · · · · · · · · · · · · · ·
Method Blank			33.0 J	ug/kg dry vrt.					100	22
Laboratory Control Sample	e	20000	19700	ug/kg dry wt.	99	89-118		20	100	22
0609110-12 PP-06-09	-SB-2 (9-10') (I)									
Matrix Spike	38000	20000	60300	ug/kg dry wt.	111	35-140		20	200	45
Matrix Spike Duplicate	38000	20000	58900	ug/kg dry wt.	104	35-140	2	20	200	45
Analyte:	Lead/USEPA-6020A									
QC Batch: 0610386 (3	020A Digestion)						Analyze	d: 09/15/200	6 By: JMF	
Method Blank			0.549 J	ug/L			<u></u>		1.0	0.24

Continued on next page

Page 107 of 112

Total Metals by EPA 6000/7000 Series Methods (Continued)

QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	DI	MD
	Conc.	Q.y.	Result	Onic -	70 Nec.	Limits	KPD	Limits	RL	MD
Analyte:	Lead/USEPA-6020A (Con	tinued)								
QC Batch: 0610386 (Cor	ntinued) (3020A Digestion)						Analyze	d: 09/15/200	6 By: JMF	
Laboratory Control Sample		100	100	ug/L	100	81-112		20	1.0	0.24
0609110-04 PP-06-09-1	TW-3 (8-13') (I)									
Matrix Spike	0.617	100	103	ug/L	103	81-122		20	1.0	0.24
Matrix Spike Duplicate	0.617	100	108	ug/L	107	81-122	4	20	1.0	0.24
QC Batch: 0610391 (305	50B Digestion)						Analyze	d: 09/18/200	6 Bv: DSC)
Method Blank			100 U	ug/kg dry wt.	V				100	41
Laboratory Control Sample		20000	18900	ug/kg dry wt.	94	80-120		20	100	41
0609110-12 PP-06-09-5	5B-2 (9-10') (I)									
Matrix Spike	14600	20000	34000	ug/kg dry wt.	97	66-138		20	100	41
Matrix Spike Duplicate	14600	20000	33600	ug/kg dry wt.	95	66-138	1	20	100	41
Analyte:	Mercury/USEPA-7470A									
QC Batch: 0610461 (74)	70A Digestion - Total)					***************************************	Analyze	d: 09/13/200	6 By: KJB	
Method Blank			0.20 U	ug/L			•		0.20	0.037
Laboratory Control Sample		2.00	2.01	ug/L	101	83-126		20	0.20	0.037
0609110-04 PP-06-09-1	TW-3 (8-13') (I)									
Matrix Spike	<rl< td=""><td>2.00</td><td>2.07</td><td>ug/L</td><td>104</td><td>70-138</td><td></td><td>20</td><td>0.20</td><td>0.037</td></rl<>	2.00	2.07	ug/L	104	70-138		20	0.20	0.037
Matrix Spike Duplicate	<rl< td=""><td>2.00</td><td>1.99</td><td>ug/L</td><td>99</td><td>70-138</td><td>4</td><td>20</td><td>0.20</td><td>0.037</td></rl<>	2.00	1.99	ug/L	99	70-138	4	20	0.20	0.037
Analyte:	Mercury/USEPA-7471A									
QC Batch: 0610420 (747	71A Mercury Digestion)						Analyze	d: 09/12/200	6 By: KJB	
Method Blank			50 U	ug/kg dry wt.					50	4.8
Laboratory Control Sample		333	349	ug/kg dry wt.	105	81-125		20	50	4.8
0609110-12 PP-06-09-9	6B-2 (9-10') (I)									
Matrix Spike	74.5	333	386	ug/kg dry wt.	94	72-127		20	50	4.8
Matrix Spike Duplicate	74.5	333	397	ug/kg dry wt.	97	72-127	3	20	50	4.8
Analyte:	Selenium/USEPA-6020A									
QC Batch: 0610386 (302	20A Digestion)						Analyze	d: 09/15/200	6 By: JMF	
Method Blank			1.0 U	ug/L				,,0	,	

Continued on next page

Page 108 of 112

Total Metals by EPA 6000/7000 Series Methods (Continued)

QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte: Sele	nium/USEPA-6020/	\ (Contin	ued)							
QC Batch: 0610386 (Continue	d) (3020A Digestion)						Analyze	d: 09/15/200	16 By: JMF	
Laboratory Control Sample		100	84.1	ug/L	84	70-101	·	20	1.0	0.73
0609110-04 PP-06-09-TW-3 (8-13') (I)									
Matrix Spike	<rl< td=""><td>100</td><td>77.3</td><td>ug/L</td><td>77</td><td>52-119</td><td></td><td>20</td><td>1.0</td><td>0.73</td></rl<>	100	77.3	ug/L	77	52-119		20	1.0	0.73
Matrix Spike Duplicate	<rl< td=""><td>100</td><td>79.9</td><td>ug/L</td><td>80</td><td>52-119</td><td>3</td><td>20</td><td>1.0</td><td>0.73</td></rl<>	100	79.9	ug/L	80	52-119	3	20	1.0	0.73
QC Batch: 0610391 (3050B DI	gestion)						Analyze	d: 09/18/200	6 By: DSC	
Method Blank			100	ug/kg dry wt.					100	
Laboratory Control Sample		20000	17800	ug/kg dry wt.	89	74-108		20	100	
0609110-12 PP-06-09-SB-2 (9-10') (I)									
Matrix Spike	493	20000	17400	ug/kg dry wt.	85	51-116		20	100	
Matrix Spike Duplicate	493	20000	17700	ug/kg dry wt.	86	51-116	2	20	100	
Analyte: Zinc	/USEPA-6020A									
QC Batch: 0610386 (3020A Di	gestion)						Analyze	d: 09/15/200	6 By: JMF	
Method Blank			5.06	ug/L					1.0	0.84
Laboratory Control Sample		100	92.7	ug/L	93	72-119		20	1.0	0.84
0609110-04 PP-06-09-TW-3 (8-13') (I)									
Matrix Spike	7.59	100	80.0	ug/L	72	57-11 9		20	1.0	0.84
Matrix Spike Duplicate	7.59	100	89.9	ug/L	82	57-119	12	20	1.0	0.84
QC Batch: 0610391 (3050B Di	gestion)						Analyze	d: 09/18/200	6 By: DSC	
Method Blank			1050	ugulkg dry we.				******	1000	
Laboratory Control Sample		20000	19500	ug/kg dry wt.	97	78-115		20	1000	

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Chloride/USEPA-325.2									
QC Batch: 0610545 (0	General Inorganic Prep)						Analyze	ed: 09/15/200	6 By: VAS	
Method Blank			0.548 3	mg/L					1.0	0.31
Laboratory Control Samp	le	50.8	50.6	mg/L	100	92-109		20		
0609110-06 PP-06-0	9-TW-6 (10-15') (I)									
Matrix Spike	28.1	50.0	77.7	mg/L	99	72-125		20	1.0	0.31
Matrix Spike Duplicate	28.1	50.0	77.9	mg/L	100	72-125	0.3	20	1.0	0.31
Analyte:	Percent Solids/USEPA-3	3550B								
QC Batch: 0610473 (I	Method-Specific Preparation)						Analyze	ed: 09/11/200	6 By: SSM	
Method Blank			0.1 U	%					0.1	0.1
0609110-12 PP-06-0	9-SB-2 (9-10') (I)									
Duplicate	59		64	%			9	20	0.1	0.1
0609110-18 PP-06-0	9-SB-5 (2.5-3.5°) (I)									
Duplicate	83		83	%			0.5	20	0.1	0.1

STATEMENT OF DATA QUALIFICATIONS

Semivolatile Organic Compounds by EPA Method 8270C

Qualification:

One or more surrogate recoveries in the GC/MS SVOC acid and/or base-neutral fraction(s) for

the sample were less than the lower control limit but greater than or equal to 10%. All results

from the same fraction are considered estimated.

Analysis:

USEPA-8270C

Sample/Analyte:

0609110-24 PP-06-09-SB-7 (7-7.5') (I)

STATEMENT OF DATA OUALIFICATIONS

Total Metals by EPA 6000/7000 Series Methods

Qualification: The analyte concentration in the associated MB was greater than or equal to the RL. The

positive sample result, which was less than 5 times the MB value, is considered estimated.

Analysis: USEPA-6020A

Sample/Analyte: 0609110-01 PP-06-09-TW-7 (8-13') (I) Zinc

 0609110-03
 PP-06-09-TW-5 (10-15') (I)
 Zinc

 0609110-04
 PP-06-09-TW-3 (8-13') (I)
 Zinc

 0609110-05
 PP-06-09-TW-3 (8-13') (D)
 Zinc

 0609110-06
 PP-06-09-TW-6 (10-15') (I)
 Zinc

Qualification: The % difference between the values of the isotopes monitored for this analyte exceeded 25%;

the lower of the two results has been reported.

Analysis: USEPA-6020A

Sample/Analyte: 0609110-01 PP-06-09-TW-7 (8-13') (I) Zinc

 0609110-03
 PP-06-09-TW-5 (10-15') (I)
 Copper

 0609110-03
 PP-06-09-TW-5 (10-15') (I)
 Zinc

 0609110-06
 PP-06-09-TW-6 (10-15') (I)
 Copper

Qualification: This analyte was not present in this sample at a concentration greater than 100 times the MDL,

therefore serial dilution is not required.

Analysis: USEPA-6020A

Sample/Analyte: 0609110-04 PP-06-09-TW-3 (8-13') (I) Arsenic

0609110-04 PP-06-09-TW-3 (8-13') (I) Zinc 0609110-12 PP-06-09-SB-2 (9-10') (I) Selenium

Qualification: Matrix QC results are not available due to sample dilution.

Analysis: USEPA-6020A

Sample/Analyte: 0609110-12 PP-06-09-SB-2 (9-10') (I) Zinc

Chain of Custody Record

PAGE OF	STD TAT RUSH TAT DATE DUE:	REMARKS	TM1053					METHÓD OF SHIPMENT/BILL OF LADING	Collaboration Date Trime Collaboration State
REQUIRED ANALYSES		PRESERVATIVE NUMBER OF CONTAINERS SUBMITTED	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					DATE TIME	DATE TIME
לילה לבן בא ללותנא	741 45 C	NO.	77					RELINQUISHED BY	RECEIVED BY
MATRIX TYPE	VSEMI-SOLID SEMI-SOLID IS OF THE SOLID	2OCID	77					DATE ТІМЕ	DATE TIME
AGINLA PROJECT NO.	ATION SAMPLER(S) NAME MAL MIT (BO) VAGER L KIMM FAX VEORMATION	SAMPLE IDENTIFICATION	1222 PR-06-09-TW-7 (8-13')(I)					L-9/1/06 @840	RECEIVED BY
×(\	PROJECT LOCATION & PROJECT MANAGER SHOLE KIMM ADDITIONAL INFORMATION	SAMPLE	-					RELINQUISHED BY SALPE	RECEIVED BY

YELLOW Copy - Forward to laboratory. WHITE Copy - Return with data package.

PINK Copy - Field File / Project Documentation.

P./REMEDIAT/CHAIN,WB3 11/1999

E-10409110

Cart 8 How And following

Chain of Custody	Fishbeck, Thompson, Carr & Huber, Inc.	L-	09/11 & Hube	O = 1	's ', ',	1110 35,24 116W	Noti	8 500		O may ferry
	1515 Arboretum Drive, SE Grand Rapids, MI 49546 (616) 575-3824	rive, SE 49546	7402 Lansi (517))2 Wes ising, № 7) 627-	Westshire Dr., Ste. ng, MI 48917-9764 627-1141	110 4775 Campus E Kalamazoo, MI (269) 375-3624	pus Drive o, MI 49008 3824	39255 Country Farmington Hills (248) 324-2090	Club Dr., Ste. B-25 3, Ml 48331	frcsh
PROJECT NO.	PROJECT NO.	MAT	MATRIX TYPE	М	לוכה זפוזה למנפו	REQUIRED ANALYSES	ANALYSES		PAGE OF	
z a	S) NAME BOP			alı	55.Co 1411 1915 1915				STD TAT	
1 1		Rataw) 2 	A1/	סחפ רוסר	5 04 40 5 4 16 9 4 17 1 401				RUSH TAT DATE DUE:	
					1 2	PRESERVATIVE	VATIVE			
=	SAMPLE IDENTIFICATION				Say.				REMARKS	
						NUMBER OF CONTAINERS SUBMITTED	INERS SUBMIT	тер		, s.
1.7	Pt-06-09-TW-5(10-15')(Ilmstow)	1)(1			41			*	* MS/msd Golf PINAS,	Part PWAS / phunclsonly
		-	-							
			-							
									The state of the s	
- (
1										
	THE THE PROPERTY OF THE PROPER									
1		-	-							Principal and Artistic Control
ì										
급	RELINGUISHED BY D	DATE	TIME		RELINQUISHED BY	Y DATE	TIME	METHOD OF SHIPMENT/BILL OF LADING	VT/BILL OF LADING	
Ψ.	RECEIVED BY D	DATE	TIME		RECEIVED BY	DATE	TIME	RECEIVED FOR LAB	SALGINE TIME	840
1 -	YELLOW Copy – Forward to laboratory	rward to	laborato	1.	PINK Copy - F	PINK Copy - Field File / Project Documentation.	cumentation.		P.'REMEDIATION	P:\REMEDIAT\CHAIN.WB3 11/1999

C

ůΟ

E-0409110

Chain of Custody Fishbeck, Thompson, Carr & Huber, Inc.

1515 Arboretum Drive, SE Grand Rapids, MI 49546 (616) 575-3824

Record

Lansing, MI 48917-9764 (517) 627-1141

Huber, Inc. 35 \times | | 10 \times 7402 Westshire Dr., Ste. 110 | 4775 Campus Drive Lansing, MI 48917-9764 | Kalamazoo, MI 49008

(269) 375-3824

Cort 8

39255 Country Club Dr., Ste. B-25 Farmington Hills, MI 48331 (248) 324-2090

OF			BEMABKS					Andreas and the state of the st					-					Q	9700 840	P./REMEDIATICHAIN.WB3 11/1999
PAGE	STD TAT RUSH TAT	DATE DUE:									A CONTRACTOR OF THE CONTRACTOR		Address of the second					NT/BILL OF LADIN		
				9														METHOD OF SHIPMENT/BILL OF LADING	RECEIVED FOR LAB	
ANALYSES			/ATIVE	NUMBER OF CONTAINERS SUBMITTED														E ME	TIME RI	sumentation.
REQUIRED ANALYSES			PRESERVATIVE	ER OF CONTAI	2),	·)											DATE	DATE	File / Project Doc
2/25	1 8 5 1 1 8 5 6 49 1 1 1 8 5 6 0 1	0J 1197	1 500		h 1	1 2				-								RELINGUISHED BY	RECEIVED BY	PINK Copy – Field File / Project Documentation.
	רוסחום											,	,					Ľ	88	
MATRIX TYPE		RIA			-													IME E	TIME	laboratory.
MAT	AQUEOUS (WATER)					1									-			n n	DATE	rward to
06523) NAME			TIFICATION	9/6/06 0950 PP-06-09-TW-3(8-B) (5/ms/ms)"	3 (8-13) (0)												ELINGUISHED BY	ECEIVED BY	YELLOW Copy - Forward to I
Physic G	PROJECT LOCATION PROJECT MANAGER PROJECT MANAGER PHONE	PAX		SAMPLE IDENTIFICATION	PP-06-09-TW	PAC6-69-TW-3 (8-13) (D)							-			de Assessande de Constantina de Cons	1000	But Put of 7106 0840	ATE TIME	WHITE Copy - Return with data package.
All Paper	LOCATION INVITED VIANAGER	ADDITIONAL INFORMATION	SAMPLE	TIME	0350	0350													β.γ	opy – Return
Plainmell	PROJECT PROJECT I	ADDITION	SAN	DATE	90/9/6	>													RECEIVED	WHITE C

YELLOW Copy - Forward to laboratory.

PINK Copy - Field File / Project Documentation.

P:\REMEDIAT\CHAIN,WB3 11/1999

Chain of Custody Fishbeck, Thompson, Carr & Huber, Inc. 35.24 (Now Carr & Huber, Inc.

1515 Arboretum Drive, SE Grand Rapids, MI 49546 (616) 575-3824

Record

7402 Westshire Dr., Ste. 110 | 4775 Campus Drive Lansing, MI 48917-9764 | Kalamazoo, MI 49008 Lansing, MI 48917-9764 (517) 627-1141

(269) 375-3824

(248) 324-2090

39255 Country Club Dr., Ste. B-25 Farmington Hills, MI 48331

All but that I

			任		· · · · · · · · · · · · · · · · · · ·													
PAGE OF	STD TAT IDAN RUSH TAT DATE DUE: LWAM	REMARKS	Mstasa for-vocs+chlondeonly				The state of the s								METHÓD OF SHIPMENT/BILL OF LADÍNG	<	S = /// PNREMEDIATIONAIN.WB3 11/1999	With ode 163
			E								<u> </u>				H SHIPM	FOR LAB	1243-	15
		QE .	-	+		$\frac{1}{\sqrt{1}}$									ЕТНОО О	RECEIVED FOR LAB	× 2	() 1
ES		UBMIT		M		a								-	Σ	<u> </u>		
NALYS		SA CONTAINERS SUBMITTED				$\frac{1}{2}$									TIME	TIME	umentat	
JIRED A	2 ANG	SONTAL SERVICE				<u> </u>									JE	TE	ject Doc	
Chequired ANALYSES	किस्म भागी	EN OF OF		-	7	7							-		DATE	DATE	ile / Pro	
	PCBSPNA	MON S													D BY		PINK Copy ~ Field File / Project Documentation.	
	Chloride Vals	247							-						RELINQUISHED BY	RECEIVED BY	K Copy	
	SCPOBICOND	DANON	Nu	1	W.	M							_		HE	REC	<u>S</u>	
MATRIX TYPE	ян			-						_					TIME	TIME	oratory.	
MATRIX	O/SEMI-SOLID	sorii	3) —		d to lab	
-	(ABTAW) SUO	∃UØA	HESTISS !	. \	7	7									DATE	DATE	Forwar	
523	PROJECT LOCATION SAMPLER(S) NAME PROJECT MANAGER PROJECT MANAGER PHONE FAX ADDITIONAL INFORMATION	ATION	Pro6-09-712-6/10-15)	2	(1) (11-7)	(-117(E)									RELINQUISHED BY	ED BY	YELLOW Copy – Forward to laboratory.	
νο π06.	(S) NAME	ENTIFIC	12.6	N. C.	18-2) 6 ~				-					RELING	RECEIVED BY		
PROJECT T	AX	SAMPLE IDENTIFICATION	1.60	-08	PP-06-09-TW-8(6-1)	11-91-00-00-1M-d(6-11)									71ME 0840	ME	ackage.	ΩI .
) Yest	0 4 14	SAM	P-06	8-0	-90-	9-90-									- 9/7/6 0840	F	n data p	27402
Ly Laber	MATION MATION				2	-	-			-					. 97.	DATE	turn witi	Ņ
VAIME	AND INTERIOR	SAMPLE TIME	- Z	1	1500	2/2									. (opy – Re	C
A din	POLECT INCLECT INCLES	SAN	90/9/6			*									RELINQUISHED BY	RECEIVED BY	WHITE Copy - Return with data package.	
<u> [</u>	<u>u u 4</u>		35	45	90	1		L L				 L		<u> </u>	α	<u>(C.)</u>	>	
			- 1	7	1-4	丁												

Chain of Custody Fishbeck, Thompson, Carr & Huber, Inc. 35.24

1515 Arboretum Drive, SE | 7402 Westshire Dr., Ste. 110 | 4775 Campus Drive Grand Rapids, MI 49546 | Lansing, MI 48917, 9764 | Kalamazoo, MI 49008 (616) 575-3824 | (517) 627-1141

Record

Cart 8

39255 Country Club Dr., Ste. B-25 Farmington Hills, MI 48331 (248) 324-2090

Icch

		•				•	Sarato Sarato	2.2 2.2 7.5		3/4	
	PAGE OF	STD TAT EVEN TAT DATE DUE:	REMARKS				MS/AND FOR PNAS+ Phonds/Acidenation	Markens Firthbank			NTBILL OF LADING DATE TIME WELG 9700 848
40	SES 5	Spylos V	E SUBMITTED	(E) (E))GG	3	(<u>S</u>)		3	40 METHOD OF SHIPMENT/BILL OF LADING RECEIVED FOR LAB DATE
	PEQUIRED ANAL	10.55 S. 20.67 S. 20.	PRESERVATIVE SE CONTAINERS SUBMITTED								Le apposo og y Date TIME
	לל היקניי הלבע היקניי	45.65, AS, CA.		- 72 -			7				RELINQUISHED BY
•	MATRIX TYPE	VSEMI-SOLID AEMI-SOLID AIR	allos		72	22	V (Bangin	>	77	7	DATE TIME L KLOO DATE TIME - 3/7/016 0725
		Sampler(s) name By PHONE FAX		PP-06-09-58-1(12.5-12') (\$) PP-06-09-58-2(9-10') (\$p/msprs/8-0-12') (\$)	(12-13) (2-2.5)		PP-06-09-5B-5(25.3.5') (4/mg) PP-06-09-56-6 (0-1') (1/ms/mg)	Pr-ol va-56.6(0-1)(0)		10-06-04-56-07(7-7,57)E)	10 PRCH STORYS RECEIVED BY Druff R.L.
	PROJECT NAME PRINCULL PROSED	PROJECT LOCATION PROJECT MANAGER SYE X KIMM ADDITIONAL INFORMATION	PLE TIME	620 170 170	1 1	2 2	1350 PP-06-0	1440 PP-06-		-90-Ak ah SI	Legalob Anterior
	PROJE Plais	PROJE PROJE ADDITION	S, DATE	12. 1.506	五元	130	8 0	80	23	त्र	PECINOUISHE RECEIVED BY CTCH S

YELLOW Copy - Forward to laboratory. WHITE Copy ~ Return with data package.

P.\REMEDIAT\CHAIN.WB3 11/1999

PINK Copy - Field File / Project Documentation.

27398 O